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Introduction
The real numbers, R, are a superset of the rational numbers, coming equipped with a natural notion
of size, the usual absolute value ‖·‖, and are a very intuitive place to learn both analysis and algebra.
Since they are so sensible, and we are so familiar with them, we spend much of our lives not even
knowing what they are! We grow up thinking that ‘real numbers’ are just decimal expansions, and at
some point we bump into the uncomfortable reality that this is not really a good definition since, for
example, 0.9999... = 1. Assuming that this is just a strange curiosity we continue to pretend that we
know our friend R, and it is only in our first course in real analysis that we learn that the real numbers
are actually the ‘completion’ of Q with respect to the metric induced by ‖·‖. This involves a rather
technical discussion about Cauchy sequences, which we eventually put to the back of our minds and
go back to thinking in terms of decimal expansions.

In this language, the real numbers are just one in a zoo of completions! We have a whole family
of other animals in this zoo: for each prime number p there is a completion Qp, which has a different
notion of size and is known as the p-adic numbers. These other completions are strange beasts, often
far easier to work with but sometimes very unintuitive. To give you some examples that we shall see
in the course, consider the following.

• Say we want to know whether an infinite series
∑∞
n=1 an converges. Intuitively, we expect that

if the size of the terms an is going to 0 as n goes to infinity then it should converge. In R this
is not enough, the situation turns out to be somewhat delicate. However, in Qp, our intuition is
correct: such a series converges if and only if the size of an goes to 0!

• Consider a disc of radius r in R, then of course it should have a unique centre point. Such an
intuitive claim is false in Qp: in fact, every element of a disc is a centre point. How odd!

This course is an introduction to these p-adic numbers, with the intention of packing your tool-kits
with various p-adic spanners and wrenches. We shall survey them from various angles, without going
to far in any one direction, so as to maximise on what you can concretely ‘do’ with them. Of course,
this being quite a short course, there is far more to see than we show here! We have cherry-picked some
useful and interesting results to prepare you to go forth and explore this exotic world in the future.

An approximation of the 3-adic numbers by Daniel Litt

Throughout these notes, p will always denote a prime number!

�
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1 The Rational Numbers Through a p-adic Lens
We begin our p-adic safari by looking at the rational numbers through a different lens – a p-adic one.
More precisely, we will consider a different notion of size on Q which depends on a fixed prime number
p, and consider the properties therein.

1.1 p-adic valuation
Prime numbers are extremely self-obsessed, showing little interest in each other. For example, you
may recall the Chinese Remainder Theorem, which can be understood as saying “the prime factors of
an integer show no interest in each other”.

In the p-adic world, which is of course ruled by it’s vain namesake prime number p, value is given
to an integer if the integer ‘contains a lot of p’. In other words, integers which are divisible by higher
powers of p are more valuable. This notion of value is made precise by the p-adic valuation.

Definition 1.1. The p-adic valuation on Z is the function

vp : Z\ {0} → Z

defined as follows. For each n ∈ Z\ {0}, let vp(n) be the unique nonnegative integer such that

n = pvp(n)n′

where n′ ∈ Z is coprime to p. We extend this to Z by writing vp(0) :=∞.
We extend this definition to Q as follows: for every pair of nonzero integers a, b ∈ Z\ {0} we

define
vp

(a
b

)
= vp(a)− vp(b).

In the literature, vp is sometimes denoted by ordp instead. We’ve chosen the former notation, but
you should keep this in mind when reading other sources.

�

Exercise 1.2. Check that for every x ∈ Q the p-adic valuation is well defined. In other words, check
that if a

b = c
d then vp(a) − vp(b) = vp(c) − vp(d). You should also check that for a nonzero rational

number x, vp(x) ∈ Z is the unique integer such that x = pvp(x) ab where a, b ∈ Z are coprime to p.

This valuation function has some useful elementary properties, which we now observe.

Proposition 1.3. The p-adic valuation satisfies the following properties for all x, y ∈ Q.

(a) vp(x) =∞ if and only if x = 0;

(b) vp(xy) = vp(x) + vp(y);

(c) vp(x+ y) ≥ min {vp(x), vp(y)}, with equality if vp(x) 6= vp(y).

Proof. (a) and (b) are clear, and left to the reader to verify as an exercise. For (c), write x = pvp(x) ab
and y = pvp(y) cd for integers a, b, c, d ∈ Z which are coprime to p.
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Now, if vp(x) = vp(y) then we get

x+ y = pvp(x)
(
ad+ bc

bd

)
,

and since vp(bd) = 0, we see that vp(x + y) = vp(x) + vp(ad + bc) ≥ vp(x) = min {vp(x), vp(y)}. If
vp(x) 6= vp(y) then let us assume without loss of generality that vp(x) = min {vp(x), vp(y)} is the
smaller one. Then now we obtain

x+ y = pvp(x)
ad+ pvp(y)−vp(x)

bd
,

and since bd and ad are coprime to p, and vp(y) − vp(x) ≥ 1, the numerator and denominator above
are coprime to p and hence vp(x+ y) = vp(x).

Example 1.4. For p = 3, we have v3(9) = v3(18) = v3
(
765
572

)
= 2. For every integer n, we can deduce

that v3(n3 − n) ≥ 1 by considering the possible congruence classes of n mod 3.

Example 1.5. We will see in the exercise class that for each positive integer n ∈ Z,

vp(n!) =

∞∑
k=1

⌊
n

pk

⌋
.

1.2 p-adic size
In the p-adic world, an integer n ∈ Z should be small if it takes a while to show up when we go looking
for it modulo powers of p. Consider the following example.

Example 1.6. Let p = 3, and consider x = 18. We cannot see anything modulo 3 since x ≡ 0 mod 3,
and similarly x ≡ 0 mod 9. However, we do see something modulo 27 = 33, since 18 6≡ 0 mod 27.

This intuition leads us to define the “p-adic absolute value”, which measures size in the p-adic world
in an analogous way to how the ‘usual’ absolute value ‖·‖ measures size in the real world.

Definition 1.7. The p-adic absolute value of a rational number x ∈ Q is

|n|p =
1

pvp(n)
,

where for n = 0 we interpret |0|p = 1/p∞ to be 0.

Example 1.8. |pn|p = 1
pn . For p = 3, continuing Example 1.4, |9|3 = |18|3 =

∣∣ 765
572

∣∣
3

= 1
9 . Moreover,

for every integer n we can bound
∣∣n3 − n∣∣

3
≤ 1

3 .
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Proposition 1.9. The p-adic absolute value satisfies the following properties for all x, y ∈ Q.

1. |x|p = 0 if and only if x = 0;

2. |xy|p = |x|p |y|p;

3. (ultrametric inequality) |x+ y|p ≤ max
{
|x|p , |y|p

}
with equality if |x|p 6= |y|p.

Proof. These follow immediately from the definition of the p-adic absolute value and the properties of
the p-adic valuation in Proposition 1.3.

Note that the real absolute value ‖·‖ satisfies the first two properties above,
but not the third. There is the triangle inequality:

‖x+ y‖ ≤ ‖x‖+ ‖y‖ ,

but this is far weaker than the third condition above. This has strange con-
sequences for geometry in the p-adic world. Recall that an isosceles triangle
is one for which two sides have the same length. Of course, in the real world,
there are more kinds of triangles than this! However, in the p-adic world every
triangle is isosceles (see exercise sheet 1).

Comparison 1.10

Indeed, this notion of size lends itself to talking about sequences converging, in a p-adic sense, to
a point.

Definition 1.11. Let an be a sequence of rational numbers. We say that a rational number a is
the p-adic limit of the sequence an if limn→∞ |an − a|p = 0. If such an a exists for the sequence
an then we write

lim
N→∞

(p)an = a.

The correct way to interpret this limit is in the language of metric spaces. If we define the p-adic
distance between x, y ∈ Q to be d(x, y) := |x− y|p, then you can check with the properties of |·|p above
that this defines a metric on Q. In this language, lim

n→∞
(p)an is the usual metric space limit of an (if it

exists). We shall not make use of this perspective yet, but it is good to keep in mind.

Example 1.12. The sequence an = pn satisfies lim
n→∞

(p)an = 0.

Example 1.13. The sequence an = 1
n does not have a p-adic limit. Indeed, assume that there is a

p-adic limit a ∈ Q. Consider the subsequence bn := 1
pn , so that |bn|p = pn. For large enough n we

have pn > |a|p, and so by Proposition 1.9 we have |bn − a|p = |bn|p = pn, which does cannot go to 0
as n→∞. Hence the limit cannot exist.

1.3 p-adic expansions
Given a rational number x = a

b , we can expand x as a power series in p, giving rise to the so-called
p-adic expansion.
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Definition 1.14. A p-adic digit is an element a ∈ {0, . . . , p− 1}. A p-adic expansion for a
nonzero rational number x ∈ Q\ {0} is a sequence of p-adic digits (ak)k≥v such that

x = lim
N→∞

(p)
N∑
k=v

akp
k,

and av 6= 0. We extend this definition to include x = 0 by taking the p-adic expansion of 0 to
have v = 0 and ak = 0 for all k ≥ 0.

The p-adic expansion is the p-adic analogue of the decimal expansion (e.g. 1
3 = 0.333...) for real

numbers R. Decimal expansions are thought of in this way as expressions

x = lim
N→∞

N∑
k=v

rk
(

1
10

)k
,

where rk ∈ {0, . . . , 9} are decimal digits.

Comparison 1.15

Example 1.16. Consider p = 5, and the number x = 566. Then we can check that a p-adic expansion
is given by

566 = 1 + 3 · 5 + 2 · 52 + 4 · 53.

Example 1.17. Consider x = −1, then how do we produce a p-adic expansion? Well, note that |x|p =
1, and we would like to start approximating by partial sums. Note that |x− (p− 1)|p = |−p|p = 1/p, so
we’d like to choose a0 = (p− 1). We now need to choose a1, and note that

∣∣x− (p2 − 1)
∣∣
p

=
∣∣−p2∣∣

p
=

1/p2. Thinking of p2 − 1 = (p− 1) + (p− 1)p we see that we should choose a1 = (p− 1) also. In fact,
the same argument tells us that∣∣∣∣∣x−

N∑
k=0

(p− 1)pk

∣∣∣∣∣
p

=
∣∣pN+1

∣∣
p

= 1/pN ,

which goes to 0 as N →∞ and so

−1 = lim
N→∞

(p)
N∑
k=0

(p− 1)pk.

We should check firstly that these p-adic expansions exist for every nonzero x ∈ Q. How should
we construct such an expansion? Firstly we note that finding a p-adic expansion for x is equivalent to
finding one for prx for any integer r, since multiplication by powers of p just shifts the digits of the
expansion along:

pr ·

( ∞∑
k=v

akp
k

)
=

∞∑
k=v+r

ak−rp
k.

Hence, in constructing the p-adic expansion, we can make a simplifying assumption that vp(x) ≥ 0 by
multiplying x by an appropriate power of p. We want to find an expression of the form

x = a0 + a1p+ a2p
2 + . . . . (1)
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Observe that, at least formally, if we could reduce x mod p then we would cut off everything after a0
and we could define a0 to be the unique p-adic digit such that a0 ≡ x mod p. We should make careful
sense of this as we cannot reduce arbitrary elements of Q mod p – what would 1/6 even mean mod 3?
We begin by writing x = pv ab for some pair of integers a, b coprime to p and v = vp(x) ≥ 0. If v > 0,
then we shall set a0 = 0. Else if v = 0 then since b is coprime to p, it is invertible mod p and so it
makes sense to define a0 to be the unique p-adic digit such that

a0 ≡ ab−1 mod p.

In particular, we then have x − a0 = a−a0b
b . By construction, the numerator is 0 mod p and the

denominator is still coprime to p and so vp(x− a0) ≥ 1 and we have found a sensible choice for a0.
We now need to find a1. In our proposed expression in (1), we note that

p−1(x− a0) = a1 + a2p+ . . . ,

so p−1(x − a0) has valuation at least 0 and a1 can be determined by performing the same pro-
cess as above replacing x with p−1(x − a0). Iterating the process, we can calculate aN+1 from
p−N

(
x− (a0 + a1p+ a2p

2 + · · ·+ aNp
N )
)
, which has valuation at least 0. In particular,∣∣∣∣∣x−

N∑
k=0

akp
k

∣∣∣∣∣
p

≤ p−N ,

so x = lim
N→∞

(p)
∑N
k=0 akp

k, and we have constructed a p-adic expansion for x.

Proposition 1.18. For each x ∈ Q there is a unique p-adic expansion.

Proof. Having provided a construction above, we are left to check that it is the only p-adic expansion.
Let x ∈ Q, and let (a′k)k≥v and (ak)k≥v be two different sequences of p-adic digits such that

x = lim
N→∞

(p)
N∑
k=v

a′kp
k = lim

N→∞
(p)

N∑
k=v

akp
k.

Note that ak − a′k ∈ {−(p− 1), . . . , (p− 1)} and so

|ak − a′k|p =

{
1 if ak 6= a′k;

0 if ak = a′k.

Let m ≥ v be the first index where am 6= a′m. Then for N ≥ m, using the ultrametric inequality∣∣∣∣∣
N∑
k=v

akp
k −

N∑
k=v

a′kp
k

∣∣∣∣∣
p

=

∣∣∣∣∣
N∑
k=m

(ak − a′k)pk

∣∣∣∣∣
p

= p−m.

On the other hand, choose ε > 0 such that ε < p−m. Then since these p-adic expansions converge to
x, for sufficiently large N we get

pm =

∣∣∣∣∣
N∑
k=v

akp
k −

N∑
k=v

a′kp
k

∣∣∣∣∣
p

=

∣∣∣∣∣
N∑
k=v

akp
k − x+ x−

N∑
k=v

a′kp
k

∣∣∣∣∣
p

≤ max


∣∣∣∣∣
N∑
k=v

akp
k − x

∣∣∣∣∣
p

,

∣∣∣∣∣x−
N∑
k=v

a′kp
k

∣∣∣∣∣
p

 ≤ ε,
which is a contradiction. Thus we can only have at most one p-adic expansion.
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The decimal expansion of a rational number is not unique, for example 0.999... = 1, but the p-adic
expansion is unique. This makes p-adic expansions quite special in comparison to their real analogue!

Comparison 1.19

In fact a useful property of these expansions is that we can read off the p-adic valuation (and so
the p-adic absolute value)!

Lemma 1.20. Let x ∈ Q be a rational number and lim
N→∞

(p)
∑N
k=v akp

k be the p-adic expansion
of x. Then

vp(x) = v and |x|p = p−v.

Proof. By the ultrametric inequality, note that for every N ≥ v∣∣∣∣∣
N∑
k=v

akp
k

∣∣∣∣∣
p

= |avpv|p = p−v.

If p−v 6= |x|p then again by the ultrametric inequality∣∣∣∣∣x−
N∑
k=v

akp
k

∣∣∣∣∣
p

= max
{
p−v, |x|p

}
,

which does not depend on N and is bigger than 0. However since the definition of a p-adic expansion
requires limN→∞

∣∣∣x−∑N
k=v akp

k
∣∣∣
p

= 0, we have reached a contradiction. The claim for the valuation

follows immediately since |x|p = p−vp(x) = p−v

Since decimal expansions of rational numbers are (eventually) periodic, it is natural to hope that
the same is true for the p-adic expansion. Whilst we’ve already seen plenty of situations where the
p-adic world is different to the real one, this is a situation where both agree.

Lemma 1.21. For all x ∈ Q, the p-adic expansion is eventually periodic.

Proof. See exercise sheet 1.

2 The p-adic Numbers

2.1 Motivation: constructing the real numbers
In the previous section we introduced the p-adic expansion of a rational number x ∈ Q, which is the
p-adic analogue of the decimal expansion of a real number. Both types of expansion are eventually
periodic for rational numbers. In the same way that the real numbers are somehow ‘the rest of the
decimal expansions’, the p-adic numbers will be ‘the rest of the p-adic expansions’.
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We often think of real numbers as being given by sums (with respect to ‖·‖) of the form

∞∑
k=m

rk( 1
10 )k,

where rk ∈ {0, . . . , 9} are decimal digits and m ∈ Z is an integer. For example π = 3.14159... can be
written with m = 0, r0 = 3, r1 = 1, r2 = 4, and so on. However one must be very careful with this,
the reals are not just somehow the ‘set of all decimal expansions’ – some distinct decimal expansions
represent the same real number, for example 0.999... = 1 in R.

�

How did we make this precise in real analysis? The answer: by using Cauchy sequences. Formally,
the real numbers are defined to be the set of Cauchy sequences (with respect to ‖·‖) in Q modulo
an equivalence relation: that two sequences (xn)n, (yn)n are equal if limn→∞ ‖xn − yn‖ = 0. Decimal
expansions provide a source of Cauchy sequences by partial sums:

∞∑
k=m

rk( 1
10 )k ↔

(
m+n∑
k=m

rk( 1
10 )k

)
n

,

and one shows that every Cauchy sequence is equivalent to one coming from a decimal expansion.

Example 2.1. The elements 0.999... ↔ (0, 0.9, 0.99, 0.999, . . . ) and 1.000... ↔ (1, 1, 1, 1, . . . )
are equal in R – the difference between the nth terms has absolute value 10−(n−1), which goes to 0 as
n→∞.

2.2 Defining Qp

The p-adic numbers will be the p-adic analogue of the story above: we want to make sense of all of
the infinite sums

∞∑
k=v

akp
k,

where ak ∈ {0, . . . , p− 1} are p-adic digits and m ∈ Z is an integer. These sums will then be called
‘p-adic numbers’. To make this rigorous, we take the same approach as with the real numbers above:
our avatar for these infinite sums will be the sequence of partial sums

∞∑
k=v

akp
k ←→

(
v+n∑
k=v

akp
k

)∞
n=0

=

(
avp

v, avp
v + av+1p

v+1, . . . ,

v+n∑
k=v

akp
k, . . .

)
. (2)

We will then define the p-adic numbers as the set of Cauchy sequences up to an equivalence relation.
Recall the definition of a Cauchy sequence (with respect to our p-adic metric).

Definition 2.2. A sequence (xn)∞n=0 of rational numbers is Cauchy with respect to |·|p if for
every ε > 0 there exists an integer N such that for all m,n ≥ N

|xn − xm|p ≤ ε.
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Lemma 2.3. Let (ak)∞k=v be a sequence of p-adic digits. For each n ≥ 0 let sn :=
∑v+n
k=v akp

k.
Then the sequence (sn)n is a Cauchy sequence of rational numbers with respect to |·|p.

Proof. For ε > 0, let N > 0 be an integer such that p−(v+N) ≤ ε. Then for n ≥ m ≥ N we use the
ultrametric inequality to obtain

|sn − sm|p =

∣∣∣∣∣
v+n∑

k=v+m+1

akp
k

∣∣∣∣∣
p

≤ p−(v+m) ≤ ε.

Definition 2.4. We denote the set of Cauchy sequences in Q with respect to |·|p by

Cp :=
{

(xn)n :
(xn)n is a Cauchy sequence

with respect to |·|p

}
.

We define an equivalence relation ∼p on Cp by saying two sequences are equivalent if they are
tending toward each other. Precisely: given two Cauchy sequences (xn), (x′n) ∈ Cp,

(xn) ∼p (x′n) ⇐⇒ lim
n→∞

|xn − x′n|p = 0

Example 2.5. The constant sequence (−1,−1, . . . ) is equivalent to the sequence (pn − 1)n.

Example 2.6. The sequences (n!)n and (pn) are both Cauchy and equivalent.

Example 2.7. Let x ∈ Q be a rational number, and let
∑∞
k=v akp

k be its p-adic expansion. Then by
definition of the p-adic expansion, the constant sequence (x)n is equivalent to the sequence of partial
sums from the p-adic expansion, i.e.

(x)n ∼p

(
v+n∑
k=v

akp
k

)
n

Definition 2.8. The set of p-adic numbers Qp is the set of Cauchy sequences in Q (with respect
to |·|p) modulo the equivalence relation ∼p:

Qp := Cp/ ∼p

In order for this new set Qp to be analogous to the reals in some way, it had better contain our old
friend Q – let us check this!

Lemma 2.9. The map Q → Qp given by sending each x ∈ Q to the equivalence class of the
constant sequence (x)n is injective.

Proof. If x 6= y are two rational numbers then by Proposition 1.9 limn→∞ |x− y|p = |x− y|p 6= 0.
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Remark 2.10. In future, we will refer to Q as a subset of Qp, implicitly meaning via the identifi-
cation between x and the equivalence class of the constant sequence (x)n. In particular, we have
distinguished elements 1, 0 ∈ Qp coming from the numbers 1, 0 ∈ Q.

2.3 Operations on Qp

Our next objective is now extend to the addition, multiplication, and p-adic absolute value from Q to
Qp.

Definition 2.11. We add and multiply Cauchy sequences as follows: for (xn)n, (yn)n ∈ Cp,

(xn)n + (yn)n := (xn + yn)n,

(xn)n · (yn)n := (xnyn)n.

Exercise 2.12. Let (xn)n, (yn)n ∈ Cp be two Cauchy sequences. Check that their product and sum
really are both Cauchy sequences, i.e. both (xn)n + (yn)n and (xn)n · (yn)n are in Cp.

Example 2.13. If x, y ∈ Q are identified with their constant sequences (x)n, (y)n ∈ Cp then addition
and multiplication for x, y are the same in Q as in Cp. If you are familiar with rings, then the highbrow
view on this is that Cp is a ring with respect to our operations above and Q→ Cp is an injective ring
homomorphism.

We also extend the p-adic absolute value on Q to an absolute value on Cp, to give us a notion of
size for these sequences. Recall that we are thinking of a Cauchy sequence (xn)n as representing its
own limit, and so notions like size should really be limits of the sizes of the entries in the sequence, as
follows.

Definition 2.14. The absolute value and valuation of a Cauchy sequence x = (xn)n ∈ Cp are

|x|p := lim
n→∞

|xn|p , and

vp(x) := lim
n→∞

vp(xn)

where on the right hand side the expressions |xn|p and vp(xn) are the p-adic absolute value and
valuation of the rational number xn.

Example 2.15. For x ∈ Q, the absolute value and valuation of the corresponding constant sequence
(x)n are just the p-adic valuation and p-adic absolute value of x.

Example 2.16. The absolute values of both (n!)n and (pn)n are zero, the absolute value of (1 + pn)n
is 1.

We should investigate the sequence of absolute values of the entries of our sequence to be sure that
this is well defined! First, we shall need the use of a convenient lemma.
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Lemma 2.17. Let x, y ∈ Q, then ∥∥∥|x|p − |y|p∥∥∥ ≤ |x− y|p .
Proof. Note that the triangle inequality gives

|x|p =
∥∥∥|x|p − |y|p + |y|p

∥∥∥ ≤ ∥∥∥|x|p − |y|p∥∥∥+ |y|p ,

Similarly, swapping x and y we obtain

|y|p ≤
∥∥∥|y|p − |x|p∥∥∥+ |x|p =

∥∥∥|x|p − |y|p∥∥∥+ |x|p .

In particular, since ‖−z‖ = ‖z‖, the claim holds.

Lemma 2.18. Let x = (xn)n ∈ Cp be a Cauchy sequence. Then the sequence
(
|xn|p

)
n
either

converges to 0 or is eventually constant. In particular |x|p ∈ R>0 and vp(x) ∈ Z ∪ {∞} always
exist and satisfy

|x|p = p−vp(x),

Proof. Recall that |·|p on Q is defined by |x|p = p−vp(x). In particular, the second claim follows from
the first, and so we must only prove the first claim about the sequence of absolute values.

We begin by claiming that the sequence
(
|xn|p

)
n
is a Cauchy sequence with respect to ‖·‖, so

converges to a limit in R. Indeed, (xn)n is Cauchy with respect to |·|p, so for ε > 0 we choose N so
that for all n,m ≥ N we have |xn − xm|p ≤ ε. Now, using Lemma 2.17, for m,n ≥ N we have∥∥∥|xn|p − |xm|p∥∥∥ ≤ |xn − xm|p ≤ ε,
as required.

Let A := limn→∞ |xn|p ∈ R and assume that A 6= 0 (so that we should show that |xn|p is constant
for large n). Then there exists an N > 0 such that for all n ≥ N ,

|xn|p >
A

2
.

Moreover, possibly making N larger, since (xn)n is Cauchy we can ensure that for all n,m ≥ N ,

|xn − xm|p <
A

2
.

We draw these two inequalities together using the ultrametric inequality (which is an equality by
the sharpness of the bounds above) to obtain that for all n,m ≥ N

|xn|p = |xn − xm + xm|p
= max

{
|xn − xm|p + |xm|p

}
= |xm|p ,

as required.

Now that we have these operations on the level of Cauchy sequences, we would like to make them
operations on Qp – and we should definitely check that this makes sense! We encapsulate everything
we need as a theorem below.

12



Theorem 2.19. Qp has well defined addition and multiplication operations induced by the oper-
ations on representatives in Cp

(xn)n + (yn)n = (xn + yn)n and (xn)n · (yn)n = (xnyn)n.

Moreover, each x ∈ Qp has a well defined absolute value and valuation induced by the absolute
value and valuation on a representative (xn) ∈ Cp

|x|p := lim
n→∞

|xn|p , and vp(x) := lim
n→∞

vp(xn),

and these satisfy |x|p = p−vp(x).
If x ∈ Q ⊆ Qp then both the absolute value and valuation agree with the p-adic absolute value

and valuation from Definitions 1.1 and 1.7

Proof. Let (xn)n, (yn)n, (x
′
n)n, (y

′
n)n ∈ Cp be Cauchy sequences with (xn)n ∼p (x′n)n and (yn)n ∼p

(y′n).
Addition: We must show that (xn + yn)n ∼p (x′n + y′n). Taking differences,

|xn + yn − x′n − y′n|p ≤ max
{
|xn − x′n|p , |yn − y

′
n|p
}
,

so since the right hand side tends to 0 as n→∞, as does the left as required.
Multiplication: We must show that (xnyn)n ∼p (x′ny

′
n). We have

|xnyn − x′ny′n|p = |(xn − x′n)yn − x′n(y′n − yn)|p
≤ max

{
|(xn − x′n)yn|p , |x

′
n(y′n − yn)|p

}
Now, by Lemma 2.18, we know that there is a positive real number C such that for sufficiently large
n |yn|p , |x′n|p ≤ C, so

|xnyn − x′ny′n|p ≤ max
{
|(xn − x′n)yn|p , |x

′
n(y′n − yn)|p

}
≤ C ·max

{
|xn − x′n|p , |y

′
n − yn|p

}
,

so again: since the right hand side tends to 0 as n→∞ so too does the left.
Absolute value: We must show that the absolute values of two equivalent sequences are the same,
i.e. that |(xn)n|p = |(x′n)n|p. By Lemma 2.17 we know∥∥∥|xn|p − |x′n|p∥∥∥ ≤ |xn − x′n|p ,
and so since the right hand side tends to 0 as n→∞ we have

|(xn)n|p = lim
n→∞

|xn|p = lim
n→∞

|x′n|p = |(x′n)n|p ,

as required.
Valuation: We must show that the valuations of two equivalent sequences are the same, i.e. that
vp ((xn)n) = vp ((x′n)n). By Lemma 2.18 and the claim for absolute values above we know that

p−vp((xn)n) = |(xn)n|p = |(x′n)n|p = p−vp((x′
n)

n
).

Hence vp ((xn)n) = vp ((x′n)n).

Excellent – we now have addition, multiplication, absolute value and valuation on Qp! We conclude
by noting an important property: much like in R, we can also divide in Qp.

13



Proposition 2.20. Let x ∈ Qp\ {0}. Then there is an element y ∈ Qp such that xy = 1.

Proof. Let (xn)n ∈ Cp be a representative for x. Then as x 6= 0 we know that limn→∞ |xn|p 6= 0 and
so by Lemma 2.18 there exists N ≥ 0 such that for all n ≥ N the value of |xn|p is the same (and not
zero!). In particular, for all n ≥ N we at least have xn 6= 0, and so has an inverse 1/xn ∈ Q.

Consider the sequence (yn)n defined by

yn =

{
1 if n < N,
1
xn

if n ≥ N.

We then claim that the class of this sequence, y = (yn)n ∈ Qp, satisfies xy = 1. In other words,
(xnyn) ∼p (1)n. Noting that

xnyn − 1 =

{
xn if n < N

0 if n ≥ N.

In particular we get, limn →∞|xnyn − 1|p = 0 and so the claim holds.

We summarise what we have shown now below.

Corollary 2.21. The following are groups:

• Qp with the addition operation +;

• Q×p := Qp\ {0} with the multiplication operation ·.

Proof. In both cases we have a binary operation which is associative by construction since it is given
by the usual addition or multiplication on Q (which is associative) element-wise on Cauchy sequences.
Thus we need only check the existence of identity elements and inverses. For addition, 0 ∈ Qp which
is represented by the constant sequence (0, 0, . . . ) is the identity element, and for x ∈ Qp represented
by (xn)n we define the (additive) inverse −x ∈ Qp to be the class represented by (−xn)n. For
multiplication, 1 ∈ Qp which is represented by the constant sequence (1, 1, . . . ) is the identity element
and for x ∈ Q×p there exists an inverse by Proposition 2.20.

Remark 2.22. If you are familiar with this language, the above addition and multiplication endow
Qp with the structure of a field.

2.4 p-adic expansions
We will now interpret elements of Qp more concretely, as p-adic expansions. This is in analogy to
recovering decimal expansions from the Cauchy sequence definition of the real numbers. We begin by
showing that for (xn)n ∈ Cp, the p-adic expansions begin to converge as n→∞. More accurately, for
each fixed precision M , if we go far enough along the sequence then the first M digits of the p-adic
expansions become constant. This will allow us to define a p-adic expansion to which the sequence is
approaching.

14



Lemma 2.23. Let (xn)n ∈ Cp, and let xn = lim
N→∞

(p)
∑N
k=v an,kp

k be their p-adic expansions.
Then for every M ≥ v there exists T ≥ 0 such that for all n,m ≥ T and v ≤ k ≤M ,

an,k = am,k.

Proof. Since the sequence is Cauchy, choose T ≥ 0 such that for all n,m ≥ T we have |xn − xm|p ≤
p−(M+1). Assume that an,k 6= am,k for some v ≤ k ≤ M . Then for all N ≥ M , by the ultrametric
inequality∣∣∣∣∣xn − xm −

N∑
k=v

(an,k − am,k)pk

∣∣∣∣∣
p

= max

|xn − xm|p ,
∣∣∣∣∣
N∑
k=v

(an,k − am,k)pk

∣∣∣∣∣
p

 ≥ p−M .
In particular, as N →∞ this cannot go to 0. However, since we are using the p-adic expansions of xn
and xm, if N is sufficiently large then we have∣∣∣∣∣xn − xm −

N∑
k=v

(an,k − am,k)pk

∣∣∣∣∣
p

≤ max


∣∣∣∣∣xn −

N∑
k=v

an,kp
k

∣∣∣∣∣
p

,

∣∣∣∣∣xm −
N∑
k=v

am,kp
k

∣∣∣∣∣
p


< p−M ,

a contradiction.

We then have the necessary tools to bring our discussion of p-adic numbers back to where it began
– p-adic expansions. Indeed, we can approximate each x ∈ Qp\ {0} by p-adic expansions which tend
toward x.

Definition 2.24. A p-adic expansion is an expression
∑∞
k=v akp

k, where (ak)k≥v is a sequence
of p-adic digits. Such an expression is a p-adic expansion for x ∈ Qp if it converges to x, i.e.

lim
N→∞

∣∣∣∣∣x−
N∑
k=v

akp
k

∣∣∣∣∣
p

= 0.

We have p-adic expansions of rational numbers. Identifying rational numbers with their constant
sequences, we obtain that these are an identical object here, and so will finally drop the notation
lim
N→∞

(p) since we are now working in Qp where ‖·‖ is not defined and so there is only one available
limit to us – the p-adic one.

�

At the start of this section, we showed that these expansions already give rise to a natural Cauchy
sequence, to which we now show they converge.

Lemma 2.25. p-adic expansions always converge to some x ∈ Qp.
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Proof. Let
∑∞
k=v akp

k be a p-adic expansion, then consider the sequence of partial sums
(∑v+n

k=v akp
k
)
n
.

This is Cauchy by Lemma 2.3, so let x ∈ Qp be the element represented by this sequence. For N ≥ 0,
using the ultrametric inequality,∣∣∣∣∣x−

N∑
k=v

akp
k

∣∣∣∣∣
p

= lim
n→∞

∣∣∣∣∣
v+n∑
k=v

akp
k −

N∑
k=v

akp
k

∣∣∣∣∣
p

= lim
n→∞

∣∣∣∣∣
n∑

k=N

akp
k

∣∣∣∣∣
p

≤ p−N .

Hence as N →∞, the sum converges to x.

Now that we know that p-adic expansions are all elements of Qp, it remains to check that all
elements of Qp are given by a p-adic expansion. In fact, as for the p-adic expansions of rational
numbers, these expansions are unique so that every x ∈ Qp can be uniquely identified with one p-adic
expansion.

Theorem 2.26. For every x ∈ Q×p , there is a unique p-adic expansion
∑∞
k=v akp

k which con-
verges to x and has av 6= 0. For x = 0 the only p-adic expansion which converges to x is the
trivial expansion with ak = 0 for all k.

Proof. For x = 0 this follows from uniqueness of the p-adic expansions of rational numbers, so we
reduce to the case x ∈ Q×p . To see existence, we use Lemma 2.23. Indeed, let (xn)n ∈ Cp be a
representative for x, and write xn =

∑∞
k=v an,kp

k. Then let v := vp(x), and ak := limn→∞ an,k, which
exists by Lemma 2.23 since the sequences (an,k)n are eventually constant as n → ∞. We check that
this is a p-adic expansion which converges to our x: for each N ≥ 0∣∣∣∣∣x−

N∑
k=v

akp
k

∣∣∣∣∣
p

= lim
n→∞

∣∣∣∣∣xn −
N∑
k=v

akp
k

∣∣∣∣∣
p

= lim
n→∞

∣∣∣∣∣
∞∑
k=N

an,kp
k

∣∣∣∣∣
p

≤ p−N .

Taking the limit as N →∞ shows that this converges.
The proof of uniqueness is almost identical to the uniqueness for p-adic expansions of rational

numbers in Proposition 1.18, and we leave it as an exercise to the reader.

2.5 Working with the p-adic expansion
Now that we have p-adic expansions, we shall endeavour to distance ourselves from thinking about Qp
in terms of Cauchy sequences and instead work with Qp in terms of these p-adic power series. There
are a number of advantages to this, not least in the far simpler description of Qp as this collection of
formal power series in p:

Qp =

{ ∞∑
k=v

akp
k : ak ∈ {0, . . . , p− 1} , v ∈ Z

}
.

Of course, to labour the point a little, a power series corresponds to a Cauchy sequence (which is
formally the element that the power series represents) via

∞∑
k=v

akp
k ←→

(
v+n∑
k=v

akp
k

)
n

.

Our addition and multiplication of Cauchy sequences then just convert into addition and multipli-
cation of power series. In other words, we can perform our arithmetic in Qp with the p-adic expansions
in a similar fashion to how it is done for decimal expansions in R: working from the first term and
making our way along the series.
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Example 2.27. Let’s take p = 5 and consider the sum of, for example,

α =

∞∑
k=−2

ak5k = 5−2 + 5−1 + 3 · 50 + 52 + 4 · 53 + · · ·

and

β =

∞∑
k=−1

bk5k = 5−1 + 3 · 50 + 51 + 3 · 53 + · · · .

Say that α+ β =
∞∑

k=−2
ck5k, then let us determine the first few ck. Firstly, c−2 = 1, then summing the

k = −2 digits gives c−1 = 1 + 1 = 2. When we reach the k = 0 we get a0 + b0 = 3 + 3 = 1 + 1 · 5, and
so we set c0 = 1 and carry the extra digit over to the next k. For k = 1 we have 1 + a1 + b1 = 2 and
so c1 = 2, with nothing to carry forward to k = 2. Continuing in this way we obtain

∞∑
k=−2

ckp
k = 5−2 + 2 · 5−1 + 50 + 2 · 51 + 52 + 2 · 53 + . . . .

We can quite easily determine absolute values and valuations from these power series.

Lemma 2.28. Let x =
∞∑
k=v

akp
k ∈ Qp. Then

vp(x) =

{
min {k : ak 6= 0} if x 6= 0,

∞ if x = 0,

|x|p = p−vp(x),

where, as always, we take p−∞ := 0.

Proof. The claim for |x|p is just a restatement of part of Theorem 2.19, placed here for the readers
convenience. For vp we note that if x = 0 then the claim is immediate by definition. Else, by
Lemma 1.20, the absolute values of the partial sum of the first n terms (once it is nonzero) is

vp

(
v+n∑
k=v

ak

)
= min {k : ak 6= 0} ,

and so since vp(x) = limn→∞ vp

(∑v+n
k=v ak

)
, the claim holds.

In fact it becomes much easier in this language to process the proofs of various results. For a start,
let us verify that |·|p and vp(·) have the same properties on Qp as on Q. We now focus a little on
the absolute value, whose properties over Q extend quite nicely to Qp and will endow Qp with the
structure of a metric space.
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Proposition 2.29. For x, y ∈ Qp:

(a) vp(x) =∞ if and only if x = 0;

(b) vp(xy) = vp(x) + vp(y);

(c) vp(x+ y) ≥ min {vp(x), vp(y)}, with equality if vp(x) 6= vp(y).

Consequently,

(a) |x|p = 0 if and only if x = 0;

(b) |xy|p = |x|p |y|p;

(c) |x+ y|p ≤ max
{
|x|p , |y|p

}
, with equality if |x|p 6= |y|p.

The last of these is called the ultrametric inequality.

Proof. By Lemma 2.28 we know |·|p = p−vp(·), and so the identities for |·|p follow from those for vp(·).
Hence we only need to prove the vp(·) identities. Firstly, (a) follows immediately from Lemma 2.28.
Now consider the p-adic expansions x =

∑∞
k=vp(x)

akp
k and y =

∑∞
k=vp(y)

bkp
k. To prove (b) we

multiply these together we obtain ∞∑
k=vp(x)

akp
k

 ∞∑
k=vp(y)

bkp
k

 = avbwp
vp(x)+vp(y) + (higher order terms).

Since p - avbw, we thus have that this lower term above has a nonzero associate p-adic digit and so
vp(xy) = vp(x) + vp(y). Finally, for (c), let v = min {vp(x), vp(y)} and extend the sequences of digits
bk or ak by setting bk = 0 or ak = 0 for any k for which they were not yet defined. Then

vp(x+ y) = vp

( ∞∑
k=v

akp
k +

∞∑
k=v

bkp
k

)
= vp ((av + bv)p

v + (higher order terms)) .

It is clear immediately that vp(x+ y) ≥ v. If vp(x) 6= vp(y), then precisely one of av or bv is nonzero,
and so av + bv 6≡ 0 mod p and the expression (av + bv) in front of pv above is already a nonzero p-adic
digit. Hence vp(x+ y) = v.
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3 Some p-adic Analysis
We shall now consider some elementary analytic properties of Qp. We will begin by discussing con-
vergence of sequences and series in Qp, before discussing power series. This will turn out to be far
simpler than in real analysis!

From this point on, our sequences will be of elements in Qp, i.e. (αn)n where each αn ∈ Qp. This
may require some mental separation from the previous section, since earlier we defined Qp in terms
of Cauchy sequences (xn)n where xn ∈ Q, and so (αn)n is really (secretly) a sequence of sequences!
Of course, we are doing our utmost to only think of Qp as ‘formal power series in p’ via the p-adic
expansion, but we must always remember the truth. Indeed, sometimes it is useful!

We will purposefully change our notation in this section to ease the mental transition: (αn)n
will be used to refer to sequences of elements of Qp.

�

3.1 Qp as a metric space
Let us now make formal what we mean when we talk about Qp as a metric space. The metric on
Qp is the function dp(x, y) = |x− y|p. It is a worthwhile exercise to verify for yourself that this
really is a metric, i.e. that it satisfies the metric space axioms. We leave this as an exercise, and
suggest the reader make use of Proposition 2.29. Recall the following definitions from your metric
space knowledge.

Definition 3.1. A sequence (αn)n of p-adic numbers is Cauchy if for every ε > 0 there exists
an integer N such that for all m,n > N we have

|αn − αm|p < ε.

Note that a convergence sequence has to be Cauchy, a classical fact from the metric spaces course which
is worth checking for yourself if you have forgotten! Ultimately it is our goal to show that conversely
every Cauchy sequence converges in Qp. To make this precise we recall the idea of convergence
here.

Definition 3.2. Let (αn)n be a sequence of p-adic numbers. Then we say limn→∞ αn exists and
is equal to some α ∈ Qp if for every ε > 0 there exists an integer N such that for all n ≥ N

|α− αn|p < ε

Note that we already know that Cauchy sequences of elements in Q ⊆ Qp will converge to an
element of Qp: namely the equivalence class of that Cauchy sequence! So what remains is to show
that Cauchy sequences which are not all rational numbers still converge in Qp.

Theorem 3.3. Let (αn)n≥0 be a Cauchy sequence of elements of Qp. Then limn→∞ αn exists in
Qp.
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Proof. Our proof will proceed by constructing a Cauchy sequence (xn)n ∈ Cp of rational numbers such
that that its equivalence class α ∈ Qp is the limit of the αn. Note that if (xn)n ∈ Cp is a Cauchy
sequence of rational numbers, then in Qp we have limn→∞ xn exists and is the equivalence class of
(xn)n.

Let αn =
∑∞
k=vp(αn)

an,kp
k be the p-adic expansion of each element in our sequence. Let us define,

for each n ≥ 0, the element

xn :=

n∑
k=vp(αn)

an,kp
k,

to be the terms up to the nth the p-adic expansion of αn. Note that by definition |αn − xn|p ≤ p−n.
Claim: (xn)n is a Cauchy sequence of rational numbers.
Proof: Clearly each xn ∈ Q, since it is a finite sum of rational numbers. Let ε > 0, and choose N > 0
such for all n,m ≥ N we have |αn − αm|p < ε. Enlarging N , which preserves the previous property,
we may assume that also p−N < ε. Then for all n,m ≥ N , using the ultrametric inequality we have

|xn − xm|p = |xn − αn + αn − αm + αm − xm|p
≤ max

{
|xn − αn|p , |αn − αm|p , |αm − xm|p

}
≤ max

{
p−n, ε, p−m

}
< ε.

so (xn)n is a Cauchy sequence.
Now that we have this Cauchy sequence, we show that its limit is precisely that of our sequence

(αn)n. Let α ∈ Qp be the equivalence class of (xn)n, let ε > 0. Choose N > 0 such that for all n ≥ N
we have |xn − α|p < ε. Possibly enlarging N , we additionally assume that p−N < ε. Then, similarly
to in the proof of the claim, we have for all n ≥ N

|αn − α|p ≤ max
{
|αn − xn|p , |xn − α|p

}
< ε.

Hence limn→∞ αn exists and is equal to α.

You may recall from your metric spaces course that this property is known as completeness. In those
words, our theorem says that Qp is a complete metric space. Similarly, in real analysis R is complete
with respect to the usual metric where the distance between x and y is ‖x− y‖.

Comparison 3.4

3.2 Sequences and series in Qp

We begin by asking: when is a sequence (αn)n of elements αn ∈ Qp convergent in Qp? In the real
numbers this is a delicate question, however in Qp it is far easier! Indeed, in the definition of Cauchy
we need only check the situation where m = n+ 1.

Lemma 3.5. A sequence (αn)n of p-adic numbers is Cauchy if and only if limn→∞ (αn+1 − αn) =
0.

Proof. If (αn)n is Cauchy then for every ε > 0 we can find N > 0 such that for all n,m ≥ N we have
|αm − αn|p < ε. In particular, when m = n + 1 we have for all n ≥ N that |αn+1 − αn|p < ε, and so
by definition limn→∞ |αn+1 − αn|p = 0.
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Conversely, let ε > 0. Then since limn→∞ |αn+1 − αn|p = 0, we choose N > 0 such that for all
n ≥ N we have |αn+1 − αn|p < ε. Now let m,n ≥ N , and assume that m > n. The ultrametric
inequality shows

|αm − αn|p = |αm − αm−1 + αm−1 − · · · − αn+1 + αn+1 − αn|p
≤ max

{
|αn+k+1 − αn+k|p : 0 ≤ k ≤ m− n− 1

}
.

By our assumption, all of the |αn+k+1 − αn+k|p < ε and so |αm − αn|p < ε.

Our use of the ultrametric inequality was very much necessary here – this claim is not true in R!
For example: if an =

√
n then clearly this sequence is not Cauchy in the real numbers since an →∞

as n→∞. However,

an+1 − an =
√
n+ 1−

√
n =

1√
n+ 1 +

√
n
≤ 1

2
√
n

which goes to 0 as n→∞.

Comparison 3.6

This lemma makes much of our p-adic analysis more pleasant than real analysis! Let us now
consider infinite series

∑∞
n=1 αn, when do these converge? Intuitively we expect that we at least need

the αn → 0 as n → ∞ since we cannot keep adding large things to our sum and expect it to stop
growing! In real analysis we learned that this was not sufficient to ensure convergence, and the situation
was somewhat delicate. However, in the p-adic world this intuitive expectation is not just necessary
but sufficient for convergence!

Proposition 3.7. Let (αn)∞n=0 be a sequence of p-adic numbers. Then the sum
∑∞
n=0 αn :=

limN→∞
∑N
n=0 αn converges in Qp if and only if limn→∞ αn = 0.

Proof. Let sN :=
∑N−1
n=0 αn be the Nth partial sum. Then by Theorem 3.3 the sequence (sn)n≥0

converges if and only if it is Cauchy, which by Lemma 3.5 is equivalent to 0 = limn→∞(sn+1 − sn).
Since αn = sn+1 − sn, the result is holds.

Example 3.8. The series
∑∞
n=1 np

n converges, since |npn|p ≤ p−n → 0 as n→∞.

Example 3.9. The series
∑∞
n=1 n! converges since we have seen in the exercise sheets that vp(n!) ≥⌊

n
p

⌋
, so

|n!|p ≤ p
−bn/pc ≤ p1−(n/p).

Again, this tends to 0 as n→∞ so the series converges.

Example 3.10. The series
∑∞
n=1 n does not converge in Qp. Indeed, the sequence αn = n does

not tend to 0 since there is the subsequence βn = np + 1 which always has absolute value |βn|p = 1.
Similarly,

∑∞
n=1

1
n does not converge.
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3.3 Power series on Qp (non-examinable)
A familiar concept from calculus is that of a power series: an infinite series F (X) =

∑
αnX

n in one
variable X. In real analysis we study these and their radii of convergence – the locus of X on which
F (X) converges. This provides an interesting family of functions with useful properties. Similarly
we can consider power series over Qp, and study where these functions are well defined. Since the
convergence of series is markedly simpler in Qp, it will come as no surprise that these behave very well!

Before discussing the radius of convergence, we will need to remember the notion of a limit superior
(denoted lim sup) of a sequence of real numbers. If you do not remember, see Definition A.1!

Definition 3.11. Let F (X) =
∑∞
n=0 αnX

n where αn ∈ Qp, be a power series over the p-adic
numbers. The radius of convergence of F is defined to be

r :=
1

lim sup
n→∞

|αn|1/np

.

The radius of convergence, much like in real analysis, does what it says on the tin: the power series
converges inside of its radius of convergence and diverges outside of it.

Proposition 3.12. Let F (X) =
∑∞
n=0 αnX

n, where αn ∈ Qp, be a power series over the p-adic
numbers, and let r denote its radius of convergence. Then the following hold for x ∈ Qp:

• F (x) converges when |x|p < r; and

• F (x) diverges when |x|p > r; and

• if there is an x0 ∈ Qp with |x0|p = r such that F (x0) converges (resp. diverges) then in
fact F (x) converges (resp. diverges) for all x ∈ Qp with |x|p = r.

Proof (non-examinable). Let us write α+ := lim supn→∞ |αn|
1/n
p , so that r := 1/α+, and by the

definition of limsup we know the following.

(i) For every ε > 0 there exists an integer N such that for all n > N we have |αn|1/np < α+ + ε.

(ii) For every ε > 0 and every integer N there exists an integer n > N with |αn|1/np > α+ − ε.

Case |x|p < 1/α+: In this setting, by Proposition 3.7 we must show that |αnxn|p → 0 as n→∞.
We make the following claim
Claim: There exist constants δ,N > 0 such that for all n ≥ N we have |αn|1/np |x|p ≤ (1− δ).
If the claim holds then as n→∞ we have

|αnxn|p =
(
|αn|1/np |x|p

)n
≤ (1− δ)n → 0.

Hence it remains in this case to prove the claim.
Proof of claim: Since |x|p < 1/α+ then there exists γ > 0 such that have |x|p ≤ (1 − γ)/α+. By (i)
(with ε = γα+) we can choose N ∈ Z such that for n > N we have |αn|1/np < α+(1 + γ). Putting this
together, we obtain

|αn|1/np |x|p < (1− γ2).

Hence setting δ = γ2 we obtain the claim.
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Case |x|p > 1/α+: In this setting, by Proposition 3.7 we must show that |αnxn|p 6→ 0 as n→∞.
We make the following claim.
Claim:There exists a constant δ such that there are infinitely many n > 0 with |αn|1/np |x|p ≥ (1 + δ).
If the claim holds then for infinitely many n we have |αnxn|p ≥ (1 + δ)n > 1 and so |αnxn|p 6→ 0 as
n→∞. Hence it remains to prove the claim.
Proof of claim: Since |x|p > 1/α+ there exists γ > 0 such that |x|p ≥ (1+γ)/α+. By (ii) we know that
for every ε > 0 there are infinitely many n such that |αn|1/np > α+(1− ε). Combining these estimates
we obtain that for every ε > 0 there are infinitely many n such that

|αn|1/np |x|p > (1 + γ)(1− ε).

Choosing ε to be very small, we obtain (1 + γ)(1− ε) > 1, and so there exists such a δ.
Case: |x|p = 1/α+ By Proposition 3.7 the series converges for such x if and only if

lim
n→∞

|anxn|p = lim
n→∞

|an|p (1/α+)n = 0.

Clearly, this condition holds for one x if and only if it holds for all such x.

Example 3.13. Consider the power series f(X) =
∑∞
n=1(−1)nXn. Since |−1|1/np = 1 we have radius

of convergence equal to 1. Hence f(X) converges when |x|p < 1. Moreover, if we take x0 = −1 then
we have for all n that

|(−1)nxn0 |p = 1,

so f(x0) diverges by Proposition 3.7. Thus by Proposition 3.12 the power series f(X) diverges for all
x with |x|p ≥ 1.

Example 3.14. The (p-adic) logarithm on Qp is defined by the power series

log(1 + x) :=

∞∑
n=1

(−1)n+1xn

n
.

The radius of convergence is 1, since we have a bound∣∣∣∣ (−1)n+1

n

∣∣∣∣1/n
p

= pvp(n)/n ≤ 1

where this inequality is an equality infinitely often (for example, whenever n = kp+ 1 for some integer
k).
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4 Algebra over Qp

We will now consider the p-adic numbers as algebraists, giving a precise notion of reduction modulo
powers of p (where this can be defined!) and solving polynomial equations in Qp. The former of these
will be a useful tool in studying the latter.

In number theory more broadly, it is a fundamental goal to understand the rational number solutions
to polynomial equations. For example, Fermat’s last theorem (famously proved by Andrew Wiles in
1995) postulates that if n ≥ 3 then the only solutions (x, y, z) to the polynomial equation

xn + yn = zn,

are the ones where x = 0, y = 0, or z = 0.
There are many situations where we’d like to show that there are just no solutions. One thing we

can do is check whether there are solutions over Qp, which will turn out to be easier to do, and if there
are none then this rules out the possibility of having any over Q

Consider the equation x2 + 1 = 0. We can see that this does not have a solution x ∈ Q because it
does not even have one in R! In this section we shall find analogues of this in the p-adic world.

Comparison 4.1

4.1 The p-adic integers
We now introduce an important subspace of Qp: the p-adic integers Zp. These are to Qp, what the
usual integers (Z) are to Q.

Definition 4.2. The p-adic integers are the unit disc in Qp:

Zp :=
{
x ∈ Qp : |x|p ≤ 1

}
.

The reader may, quite rightly, be wondering: why are we calling these ‘integers’? Well, if we think
of Z as the rational numbers whose denominator is 1 then Zp is the p-centric version of this where we
only care about whether there is a p in the denominator. In fact, by Lemma 2.28 we could equivalently
define Zp as the set p-adic numbers whose p-adic expansion starts on or after 0.

Zp :=

{ ∞∑
k=0

akp
k ∈ Qp : ak ∈ {0, . . . , p− 1} ∀k ≥ 0

}
,

since |x|p = p−vp(x) ≤ 1 is equivalent to vp(x) ≥ 0 and vp(x) is the index where the first nonzero p-adic
digit of x occurs. We first observe, as an example, that Z ⊆ Zp.

Example 4.3. Let x ∈ Z be an integer, then immediately x ∈ Zp since vp(x) ≥ 0 for every p!

The notation might lead you to expect that Q∩Zp = Z, but beware that this is false! For example,
if p is an odd prime then 1/2 ∈ Zp since vp(1) = vp(2) = 0 so |1/2|p = p0 = 1, but 1/2 6∈ Z. More
generally, we can see from the definition of vp that

Q ∩ Zp =
{a
b
∈ Q : p - b

}
.

Our operations on Qp restrict to operations on Zp. That is, sums and products of p-adic integers
are themselves p-adic integers.
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Lemma 4.4. The p-adic integers, Zp, form a subgroup of (Qp,+) and moreover for every x, y ∈
Zp we have xy ∈ Zp.

Proof. To get that this is a subgroup, note that |0|p = 0 ≤ 1 and for x, y ∈ Zp we have |−x|p = |x|p ≤ 1

and |x+ y|p ≤ max
{
|x|p , |y|p

}
≤ 1 so Zp is closed under inverses and sums and hence a subgroup.

The second claim is immediate since |xy|p = |x|p |y|p ≤ 1.

Remark 4.5. If you are familiar with the language, then Zp is a subring of Qp.

Thinking back to when we discussed (and constructed) p-adic expansions, these are precisely the kind
of numbers we expect to be able to ‘reduce mod p’ by just truncating the p-adic expansions. Indeed,
this is not a hazy concept but a well defined one!

Proposition 4.6. For every integer r ≥ 1, there are well defined reduction mod pr maps

· : Zp → Z/prZ

x =

∞∑
k=0

akp
k 7→ x :=

r−1∑
k=0

akp
k.

Moreover, x+ y ≡ x + y and xy = x y. We often just write x ≡ x mod pr in the same way as
we do for reduction of the integers mod pr.

Proof. Since p-adic expansions are unique, this is well defined. Moreover, we can see that the operations
are identical on either side.

Remark 4.7. In particular, these reduction maps are homomorphisms of groups (Zp,+) →
(Z/pkZ,+). Indeed, if this is familiar to you, they are homomorphisms of rings.

Note that the kernels of these reduction maps are the natural thing: the multiples of pr.

Lemma 4.8. Let r ≥ 1 be an integer. Then the kernel of the reduction map Zp → Z/prZ is

prZp = {x ∈ Zp : vp(x) ≥ r} .

Proof. If vp(x) ≥ r then x = prx′ for some x′ ∈ Zp. We then reduce and obtain

x ≡ prx′ ≡ 0 mod pr.

Conversely, if x ≡ 0 mod pr, then by definition x = 0 +
∑∞
k=r akp

k, so vp(x) ≥ r.

These reduction maps will turn out to be a great ally in solving polynomial equations! For a start,
roots in Zp reduce mod pr to roots in Z/prZ, so if there are no roots in the latter then we certainly
can’t have any in the former. Let us see an example of this.
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Example 4.9. Let f(X) = X2 + 3, we want to know if f(X) has roots in Q5.
Let us begin by asking a restricted question: does it have roots in Z5? Say that it does, so there is

some α ∈ Z5 such that α2 + 3 = 0. Reducing mod 5, we obtain that the reduction α ∈ Z/5Z satisfies

α2 ≡ 2 mod 5.

However, we can quickly check that the squares modulo 5 are 0, 1, and 4, so this α (and hence this α)
cannot exist. Thus f has no roots in Z5.

Now let us return to the bigger question: are there roots in Q5? Well let us assume that α ∈ Q5 is
a root. We have shown that α is not a p-adic integer, so we must have v5(α) < 0. However, using the
ultrametric inequality

v5(α2 + 3) ≥ min
{
v5(α2), v5(3)

}
= min {2v5(α), 0} = 2v5(α)

with equality if 2v5(α) 6= 0, which is true by our assumption! However now we are in a spot of bother:

∞ = v5(0) = v5(α2 + 3) = 2v5(α),

which is a contradiction since we assumed that v5(α) < 0. Hence f(X) has no roots in Q5.

There were two ‘steps’ in the example above: showing that the polynomial has no roots in Zp, and
then showing that every Qp root lies in Zp. A mathematician with a plan would probably prove the
second step first, to reduce the set they need to search for roots in, and then perform the first step
to show that there are no roots there. But we were out exploring and happened upon these facts by
chance, so such planning could not have been done!

The second step in Example 4.9, showing that the roots in Qp were actually in Zp is also very
general, as we will shortly show. Firstly, a useful definition.

Definition 4.10. A polynomial f(X) = αdXd + αd−1X
d−1 · · · + α0 is said to be monic if the

leading term has coefficient αd = 1.

Note that the roots of a non-monic polynomial of degree d, f(X) = αdXd +αd−1X
d−1 · · ·+α0 are

the same as those of 1
αd
f(X) which is a monic polynomial of degree d. So we can always work with

monic polynomials if we wish.

Proposition 4.11. Let f(X) = Xd + αd−1X
d−1 + · · ·+ α0 be a monic polynomial whose coeffi-

cients α0, . . . , αd−1 are all in Zp. Assume that β ∈ Qp is a root of f . Then β ∈ Zp.

Proof. The proof proceeds similarly to the previous example. Let us assume for a contradiction that
vp(β) < 0 (equivalently, that vp(β) ≤ −1).

Firstly, vp(βd) = dvp(β).
Secondly,

vp
(
αd−1β

d−1 + · · ·+ α0

)
≥ min

{
αiβ

i : i ∈ {0, . . . , d− 1}
}
.

Since each αi ∈ Zp we have vp(αiβi) = vp(αi) + ivp(β) ≥ ivp(β) and so the least that the min above
can be is (d− 1)vp(β).

Thirdly, since vp(β) < 0, we have dvp(β) < (d− 1)vp(β) and so by the ultrametric inequality

∞ = vp(0) = vp
(
βd +

(
αd−1β

d−1 + · · ·+ α0

))
= dvp(β),

so we have reached a contradiction.

This idea of checking whether a polynomial has roots modulo pk, which was the second step in Ex-
ample 4.9, is in fact even stronger than it first appears. It is not just necessary but sufficient, in the
sense of the lemma below.
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Proposition 4.12. Let f(X) be a polynomial with coefficients in Zp. Let y ∈ Zp. Then f(y) = 0
if and only if f(y) ≡ 0 mod pk for all k ≥ 1.

Proof. Clearly, if f(y) = 0 then it is zero modulo all powers of p. Conversely, recall that the kernel
of the reduction mod pk map is the set of integers x ∈ Zp with vp(x) ≥ k. In particular, if f(y) ≡ 0
mod pk then vp(f(y)) ≥ k. Since this holds for all k, we have vp(f(y)) =∞ and so f(y) = 0.

Combining the steps we arrive at a useful theorem, which substantially generalises Example 4.9.

Theorem 4.13. Let f(X) be a monic polynomial with coefficients in Zp, and let y ∈ Qp. Then
f(y) = 0 if and only if both y ∈ Zp and f(y) ≡ 0 mod pk for all k ≥ 1.

Proof. This is immediate from Propositions 4.11 and 4.12.

Example 4.14. If we are given a polynomial which has a coefficient in Qp but not Zp then what can
we do? Well we can certainly re-arrange! Consider f(X) = x2 + 1

2 over Q2. The roots of f are the
same as those of 4f , so we can instead ask if 4f(x) = 4x2 + 2 has a root. But now we can perform
the substitution x := u/2 to obtain the equation g(u) = u2 + 2, and note that the roots of g(u) are in
bijection with those of f via u 7→ 2x. Hence we can now check for roots by considering g(u), which
does satisfy our hypotheses above and so we can try to rule out roots by looking mod p.

4.2 Solving Equations
We have so far seen that reduction modulo p (or its powers) can be used to rule out the existence of
roots of polynomials, but what if the polynomial does have a root mod p? The p-adic numbers have
a wonderful property: often we can go the other way! That is, given a nice enough root modulo p, we
can lift it back to a root in Zp! Of course, this is not something we could do in Q, as we see in the
example below.

Example 4.15. The polynomial f(X) = X2− 2 has no roots in Q but does have roots in Z7 ⊆ Q7, as
we will see in the exercise class.

The result which allows us to ‘lift’ roots modulo p to ones in Zp is known as Hensel’s lemma, and
is an important and useful tool in p-adic algebra. The sorts of roots that we will be able to deal with
are so-called simple roots.

Definition 4.16. Let f(X) be a polynomial over Qp, and let f ′(X) = d
dX f(X) denote its

derivative. Then we say that y ∈ Qp is a simple root of f if both f(y) = 0 and f ′(y) 6= 0.

Exercise 4.17. One can alternatively characterise a simple root y as one which occurs with multiplicity
1 in f(X), i.e. that f(X) = (X−y)g(X) with g(y) 6= 0. Check that these two definitions are equivalent!
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Theorem 4.18 (Hensel’s Lemma). Let f(X) be a monic polynomial with coefficients in Zp.
Assume that there exists α ∈ Zp such that

• |f(α)|p < 1 (equivalently, f(α) ≡ 0 mod p)

• |f ′(α)|p = 1 (equivalently, f ′(α) 6≡ 0 mod p)

Then there is a unique element y ∈ Zp such that f(y) = 0 and y ≡ α mod p. Moreover, y is a
simple root of f .

Proof of Hensel’s lemma (Theorem 4.18). The proof proceeds via the so-called Newton-Raphson algo-
rithm. Taking α as in the theorem statement, we define a sequence (αk)k≥0 of p-adic numbers:

α0 := α;

αk+1 := αk −
f(ak)

f ′(ak)
∀k ≥ 0.

We will show that the sequence (αk)k≥0 converges to a root of f , and the theorem will follow. To do
this we will need a small lemma.

Lemma 4.19. For all k ≥ 0 we have |f ′(αk)|p = 1 and |f(αk)|p ≤
1

p2k
.

Assuming that Lemma 4.19 is true, then

|αk+1 − αk|p =

∣∣∣∣ f(αk)

f ′(αk)

∣∣∣∣
p

≤ 1

p2k
. (3)

Since this goes to 0 as k →∞, by Lemma 3.5 the sequence (αk)k≥0 is Cauchy and so by Theorem 3.3
converges to an element y = limk→∞ αk ∈ Qp. We further claim that y ∈ Zp. Indeed, if not then
|y|p > 1 and by the ultrametric inequality we have for all k that |y − αk|p = |y|p. But by the definition
of convergence this would mean that 1 < |y|p < ε for all ε > 0, a contradiction. Thus we have y ∈ Zp.
Also, by (3) we have y ≡ αk mod p2

k

for all k, and so

f(y) ≡ f(αk) ≡ 0 mod p2
k

,

so f(y) ≡ 0 mod pr for all r ≥ 0. Thus by Proposition 4.12 f(y) = 0.
The root y is unique and simple since, if it were not, then we would have f(X) ≡ (X − α)2g(X)

mod p for some polynomial g(X) with coefficients in Z/pZ. By the product rule we’d then have
f ′(X) ≡ 2(X−α)g(X)+(X−α)2g′(X). In particular, f ′(α) ≡ 0 mod p, which contradicts our initial
hypotheses in the theorem statement.

Thus Hensel’s lemma holds, so long as Lemma 4.19 is true. We now prove that this is indeed the
case.

Proof of Lemma 4.19. We prove this by induction. For k = 0 this is simply the hypothesis of the
theorem. Assuming then that it is true for k ≥ 0, we proceed.

Firstly, by our inductive hypothesis f(αk)/f ′(αk) ≡ 0 mod p, so

αk+1 = αk −
f(αk)

f ′(αk)
≡ αk ≡ α mod p.

Secondly, using this,
f ′(αk+1) ≡ f ′ (α) 6≡ 0 mod p.
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In particular, since it is an integer, |f ′(αk+1)|p = 1. Finally, we must show f(αk+1) ≡ 0 mod p2
k+1

.
We take the Taylor expansion (defined in the usual way) of f(X) about the point αk, so that

f(X) = f(αk) + (X − αk)f ′(αk) + (X − αk)2G(X),

for some polynomial G(X) over Zp. Setting X = αk+1 we see

f(αk+1) = f(αk) + (αk+1 − αk)f ′(αk) + (αk+1 − αk)2G(αk+1)

= f(αk) +

(
− f(αk)

f ′(αk)

)
f ′(αk) +

(
− f(αk)

f ′(αk)

)2

G(αk+1)

=

(
f(αk)

f ′(αk)

)2

G(αk+1).

Hence vp (f(αk+1)) = vp

((
f(αk)
f ′(αk)

)2
G(αk+1)

)
≥ 2vp (f(αk)) ≥ 2 ·2k = 2k+1, so the claim follows.

Example 4.20. Hensel’s lemma shows that f(X) = X2 − 2 has roots in Z7. Indeed, the derivative is
f ′(X) = 2X, so if α = 3 then we have

f(α) ≡ 0 mod 7

f ′(α) = 6 6≡ 0 mod 7.

Hensel’s lemma shows that there is a unique β ∈ Zp with f(β) = 0 and β ≡ 3 mod 7.

Corollary 4.21. Assume p is an odd prime number. Then Qp contains a root of unity of order
p− 1, i.e. there is an element ζ ∈ Qp such that ζk 6= 1 for all 1 ≤ k ≤ p− 2 and ζp−1 = 1.

Proof. Recall that Z/pZ× is a cyclic group of order p−1. Let n ∈ {1, . . . , p− 1} be such that n mod p
generates Z/pZ× (i.e. a primitive element).

Note that if f(X) := Xp−1 − 1 then f(n) ≡ 0 mod p, and moreover f ′(n) = (p − 1)n 6= 0 so by
Hensel’s lemma there is an element ζ ∈ Zp with ζp−1 = 1 and ζ ≡ n mod p. Since n reduces to a
generator of Z/pZ×, nk 6≡ 1 mod p for all 1 ≤ k ≤ p − 2. In particular, for such k, ζk ≡ nk 6≡ 1
mod p, so ζk 6= 1.

Corollary 4.21 shows that Qp has (p− 1)th roots of unity! This is markedly different from the real
numbers where the only roots of unity are ±1!

Comparison 4.22

4.3 Irreducibility
So far we have considered how to determine how many roots a polynomial has. On the opposite side of
the spectrum, there is the notion of irreducibility: that a polynomial does not factor into any smaller
pieces, even non-linear ones!
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Definition 4.23. Say a polynomial is irreducible if it cannot be written as a product of two
polynomials of degree at least 1.

Example 4.24. The polynomial X4 + 3X2 + 2 has no roots over Q, but it is not irreducible. Indeed,
X4 + 3X2 + 2 = (X2 + 1)(X2 + 2), and we know that neither of these factors has a root over R (let
alone Q!).

Example 4.25. The polynomial f(X) = X3 − 2 is irreducible over Q. Indeed, if it were to factor as
f = gh then since deg(g),deg(h) ≥ 1 and deg(g) + deg(h) = deg(f) = 3, one of g or h must have
degree 1. However, 2 is not the cube of any rational number. Note that we can prove that p-adically: if
2 = α3 then in Q2 we would have 1 = v2(2) = v2(α3) = 3v2(α), but v2(α) ∈ Z and 1 is not an integer
multiple of 3.

As we have done in the past with questions about polynomials, we can reduce the question of irre-
ducibility to an integral one. This is a classical result of Gauss, which says that if a (monic) polynomial
with coefficients in Zp factors into two non-constant polynomials, then these new polynomials can be
taken to be in Zp.

Lemma 4.26 (Gauss’ lemma). Let f(X) be a monic polynomial with coefficients in Zp, and say
f(X) = g(X)h(X) where g and h are monic polynomials with coefficients in Qp of degree at least
1. Then both g and h have all coefficients in Zp.

Proof. Let r, s ∈ Z be the smallest integers such that prg(X) and psh(X) have Zp coefficients. Note
that since g, h are monic, we must have r, s ≥ 0. Moreover, since r and s are minimal we must have
that prg and psh are non-zero mod h and so pr+shg = pr+sf is nonzero mod p. But f was already
nonzero mod p, so we must have r + s = 0. Hence r = s = 0.

An extremely useful tool in p-adic algebra is Eisenstein’s criterion, which sometimes gives us a way
to determine that a polynomial is irreducible simply from examining the coefficients.

Theorem 4.27 (Eisenstein’s Criterion). Suppose that f(x) = xd+ad−1x
d−1+ · · ·+a0 is a monic

polynomial with coefficients in Zp. If

• |ak|p ≤ 1/p for all k, and

• |a0|p = 1/p,

then f(x) is irreducible over Qp.

Proof. Say, for a contradiction, that f is not irreducible, so f(X) = g(X)h(X) where g, h both have
degree at least 1. Write

g(X) = Xr + gr−1X
r−1 · · ·+ g0;

h(X) = Xs + hs−1X
s−1 · · ·+ h0;

f(X) = Xr+s + ar+s−1X
r+s−1 · · ·+ a0.

By Lemma 4.26 both g and h have all Zp coefficients. In particular we can reduce f, g and h modulo
p to obtain

f(X) ≡ g(X)h(X) mod p.
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The assumptions in the theorem statement force f(X) ≡ Xr+s mod p. Hence we must have that
g(X) ≡ Xr mod p and h(X) ≡ Xs mod p. In particular, we must have g0 ≡ h0 ≡ 0 mod p, so
|g0|p , |h0|p ≤ 1/p. But then since a0 = h0g0, we must have |a0|p ≤ 1/p2, a contradiction.

This provides us with an easy test to see whether a polynomial is irreducible!

Example 4.28. Consider the polynomial X5 + 124625X3 + 105 over Q5. Then since 150 = 5 × 21
it follows that |105|p = 1/5, and moreover 5 | 124625 so |124625|p ≤ 1/5. Hence the polynomial is
irreducible.

Example 4.29. Consider the polynomial f(X) = X2 +X + 1 over Q3. Then we do not immediately
see how to apply Eisenstein’s criterion. However, note that f(X) factors if and only if f(X+1) factors,
and for this latter we have f(X + 1) = X2 + 3X + 3 which now satisfies Eisenstein’s criterion and so
is irreducible.

In fact, Eisenstein’s criterion allows us to show more about roots of unity in Qp – there are no
non-trivial pth roots of unity.

Corollary 4.30. Assume that p is an odd prime number. If α ∈ Qp satisfies αp = 1 then α = 1.

Proof. Factor f(X) = Xp − 1 = (X − 1)(Xp−1 +Xp−2 + · · ·+ 1). If α 6= 1 then it must be a root of
the other factor, Φ(X) = Xp−1 + Xp−2 + · · · + 1, so let us examine that factor. Note that, in Z/pZ
we can perform

f(X + 1) ≡ (X + 1)p − 1 = Xp + 1− 1 = Xp,

In particular, since Φ(X + 1) is a factor of f(X + 1), we must have Φ(X + 1) ≡ Xp−1 mod p. In
particular, if Φ(X+ 1) = Xp−1 +

∑p−2
k=0 αkX

k, we have |αk|p ≤ 1/p. Moreover, looking at the constant
term we get from

Φ(X + 1) = (X + 1)p−1 + (X + 1)p−2 + · · ·+ 1,

we get a0 = p and so |a0|p = 1/p. In particular Φ(X+1) satisfies Eisenstein’s criterion so is irreducible,
so Φ(X) is also irreducible and hence if α is a root of Xp−1 then it must be a root of the factor X−1
so α = 1.

This is the opposite of the situation for (p− 1)th roots of unity, of which Qp has plenty. There is a
sense in which this mimics the status of −1 not being a square in R, though the analogy is hard to
describe with the technology currently available.

Comparison 4.31
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5 Topological Properties of Qp

We shall now move to study Qp from a topological perspective, i.e. as a metric space. The open (and
closed) sets determine the structure of such a space, and so we start there and observe some interesting
(and odd!) properties of Qp. We will then move to look at continuous functions on Qp. This study will
conclude by defining and looking into properties of the ‘Mahler expansion’ of a continuous function
f : Zp → Qp.

5.1 Open and closed balls
Let us recall the definitions of open and closed balls from the metric spaces course, in our setting.

Definition 5.1. The open ball of radius r > 0 centred at a point α ∈ Qp is the set

Br(α) :=
{
y ∈ Qp : |α− y|p < r

}
.

The closed ball of radius r > 0 centred at a point α ∈ Qp is the set

Br(α) :=
{
y ∈ Qp : |α− y|p ≤ r

}
.

More generally, a subset U ⊆ Qp is an open set if for every α ∈ U there exists a radius r > 0
such that

Br(α) ⊆ U.

To make ideas more concrete, let us consider the open ball of radius 1 centred at 0,

B1(0) =
{
y ∈ Qp : |y|p < 1

}
.

Firstly, this is immediately a subset of Zp. Moreover, since |y|p = p−vp(y), this set can be characterised
in many ways:

B1(0) =
{
y ∈ Qp : |y|p ≤ 1/p

}
= B1/p(0)

= {y ∈ Qp : vp(y) ≥ 1}

=

{
y ∈ Zp : the p-adic expansion of y is of the form

∞∑
k=1

akp
k

}
= {y ∈ Zp : y ≡ 0 mod p} .

Note that we were able to translate the < 1 into ≤ 1/p because the values of |·|p are always powers of
p, so if they are less than 1 = p0 then they cannot be more than p−1. Inspired by this observation, we
note that closed sets are surprisingly redundant in Qp.

Lemma 5.2. A subset S ⊆ Qp is an open ball if and only if it is a closed ball.

Proof. If S = Br(α) for some r > 0 and α ∈ Qp, then let N ∈ Z be the smallest integer such that
pN < r. Then since |·|p takes values in powers of p, we obtain

Br(α) =
{
y ∈ Qp : |α− y|p < r

}
=
{
y ∈ Qp : |α− y|p ≤ p

N
}

= BpN (α).
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Conversely, if S = Br(α) then chooseM ∈ Z to be the smallest integer such that pM > r. We similarly
obtain

Br(α) =
{
y ∈ Qp : |α− y|p ≤ r

}
=
{
y ∈ Qp : |α− y|p < pM

}
= BpM (α)

In the real numbers, the ball of radius r > 0 around x ∈ R is the open interval (x − r, x + r) ⊆ R.
Similarly, the closed ball with the same parameters is the closed interval [x−r, x+r] ⊆ R. Lemma 5.2
is a first indication that Qp has very different topological behaviour to R – in the latter, closed balls
are never equal to open balls!

Comparison 5.3

If the fact that closed balls are the same thing as open balls can be categorised as odd, then the
next fact is downright absurd!

Lemma 5.4. Every element of an open ball is a centre-point of that ball. That is, if r > 0 is a
real number, α ∈ Qp and β ∈ Br(α) then

Br(β) = Br(α).

Proof. Note that for every y ∈ Qp the ultrametric inequality shows

|β − y|p = |(β − α) + (α− y)|p ≤ max
{
|α− β|p , |α− y|p

}
.

Note that since β ∈ Br(α) we must have |α− β|p < r. Hence if y ∈ Br(α) then |α− y|p < r, and so
by the inequality above |β − y|p < r. Hence Br(α) ⊆ Br(β). Note now that α ∈ Br(β) and so by the
same argument we must have Br(β) ⊆ Br(α), so equality.

It is needless to say this is completely ridiculous from the perspective of the real numbers. The
open interval (x − r, x + r) ⊆ R has one centre-point, the point x, which is in the middle of the
interval. The reason for this behaviour is the strength of the ultrametric inequality, which is far
more powerful than the triangle inequality. We shall need to substantially change our metric space
intuition from how we think of R in order to understand Qp!

Comparison 5.5

More generally we will be interested in looking at subspaces X ⊆ Qp, in particular the case
X = Zp will be important. In this setting remember that all of our definitions simply descent to X in
the natural way. We shall only recall the definition of open balls, since closed balls are analogous (and
by Lemma 5.2 are a little redundant in the p-adic world).

Definition 5.6. Let X ⊆ Qp. Then the open ball of radius r > 0 in X centred at a point α ∈ X
is the intersection

BXr (α) := Br(α) ∩X.
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5.2 Continuous functions
A central concept in the study of metric spaces is the collection of continuous functions on the
space.

Definition 5.7. Let X ⊆ Qp. Then a function f : X → Qp is said to be continuous at a point
α ∈ X if for every ε > 0 there exists δ > 0 such that

|β − α|p < δ =⇒ |f(β)− f(α)|p < ε.

We simply say that f is continuous if it is continuous at every α ∈ X.

Recall that colloquially this is saying that we are continuous at a point α ∈ X if every ball we put
around f(α) contains the image of a small ball around α. Formally: for every ε > 0 there exists δ > 0
such that

β ∈ BXδ (α) =⇒ f(β) ∈ Bε(f(α)).

Example 5.8. The identity function f : X → Qp sending α ∈ X to f(α) = α is continuous, since we
can choose δ = ε.

Example 5.9. a0 : Zp → Qp be the function given by a0(α) = a0 where α =
∑∞
k=0 akp

k is the p-adic
expansion of α. Then this function is continuous. Indeed, before we even think about ε, consider δ = 1:

B
Zp

1 (α) =
{
β ∈ Zp : |β − α|p < 1

}
= {β ∈ Zp : β − α ≡ 0 mod p}
= {β ∈ Zp : β ≡ α mod p}
= {β ∈ Zp : a0(β) = a0(α)} .

Hence, for every ε > 0 we can choose δ = 1 so that β ∈ B1(α) immediately implies a0(β) = a0(α) ∈
Bε(a0(α)).

Lemma 5.10. Sums and products of continuous functions are continuous functions. That is, if
X ⊆ Qp and f, g : X → Qp are continuous, then f + g and fg are both continuous also.

Proof. See the exercise sheets.

An important consequence of the above is that polynomials define continuous maps.

Lemma 5.11. Polynomials define continuous functions from Qp to Qp.

Proof. Firstly, the identity function x 7→ x is continuous. By Lemma 5.10 we know that products
of continuous functions are continuous, so applying this repeatedly we then obtain that x 7→ xn is
continuous for every x and every integer n > 0. Moreover, for a ∈ Qp the constant function x 7→ a is
also clearly continuous, and so again the product x 7→ axn is continuous. Since polynomial functions
are sums of such functions, the result follows from the fact that sums of continuous functions are also
continuous by Lemma 5.10.
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5.3 Locally constant functions
In Example 5.9, we saw that the function a0 was continuous by showing that it was constant on open
balls of radius 1 around each point. This ‘locally constant’ behaviour is actually very common in the
p-adic world, so we shall investigate!

Definition 5.12. Let X ⊆ Qp, and f : X → Qp be a function. Then f is locally constant if
there is a ball around every point such that f is constant in that ball. Precisely: for every α ∈ X
there exists δ > 0 such that f is constant BXδ (α).

In the real numbers, every locally constant function is just constant, as otherwise we would have
sharp jumps between two different balls with different constant values. However, in the p-adics we do
have locally constant functions which are not constant, as we have already observed in Example 5.9.
This is really a consequence of the disconnectedness of the balls in Qp, and we shall see some shadows
of this in the exercise class.

Comparison 5.13

As we saw in the example, locally constant functions are always continuous.

Lemma 5.14. Let X ⊆ Qp, and let f : X → Qp be a locally constant function. Then f is
continuous.

Proof. Let α ∈ X and ε > 0. Since f is locally constant, choose δ > 0 so that f is constant on BXδ (α),
then for β ∈ BXδ (α)

|f(α)− f(β)|p = 0 < ε.

Despite the fact that locally constant functions do not need to be constant, they cannot freely take
as many values as they like. Their image is quite constrained!

Lemma 5.15. Let f : Zp → Qp be a locally constant function. Then the image of f is a finite
set.

5.4 Mahler Expansions
In the p-adic world, since factorials tend to 0 quickly, binomial coefficients are very useful. Indeed, we
extend the usual binomial coefficients to functions on Zp as follows.
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Definition 5.16. For each n ≥ 0 we define the extended binomial coefficient
( ·
n

)
to be the

function (
·
n

)
: Zp → Qp

α 7→
(
α

n

)
:=

α(α− 1) . . . (α− (n− 1))

n!
.

Note that for each positive integer x the extended binomial coefficient is the usual binomial coefficient(
x

n

)
=

x!

n!(x− n)!
.

Example 5.17. Note that
(−1
n

)
= (−1)n.

The binomial coefficients are polynomials, and so by Lemma 5.11 are already continuous functions.
In spite of their small denominators, they even map Zp to Zp!

Lemma 5.18. For every n ≥ 0, and every α ∈ Zp, we have(
α

n

)
∈ Zp.

Proof. The proof is very similar to our computation of vp(n!) in Example 1.5, see the exercise sheet.

These coefficients turn out to play an important role in the space of continuous Qp-valued functions
on Zp. Their role is much like that of e2πiz in real and complex analysis, as they provide a sort-of basis
for the continuous functions. That is, every continuous function Zp → Qp can be uniquely expressed
as a sum of binomial coefficients. This is a result due to Mahler.

Theorem 5.19 (Mahler Expansion). Let f : Zp → Qp be a continuous function. Then there is
a unique sequence (αn)n in Qp such that

∞∑
n=0

αn

(
x

n

)
converges to f(x) for every x ∈ Zp. We call this the Mahler expansion of f .

Unfortunately, we do not have the time in this course to prove this result. We therefore assert it
without proof, and instead focus on more practical questions – like how to compute it! For this we
will require the difference operator, which you should think of as a form of ‘discrete differentiation’.
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Definition 5.20. Let C(Zp) := {f : Zp → Qp : f is continuous}. Then the difference operator
∆ is the map

∆ : C(Zp)→ C(Zp)
(∆f)(x) := f(x+ 1)− f(x).

The difference operator is intimately linked to the Mahler expansion, and will be our primary in-
road to compute Mahler expansions. Let us observe what this operator does to the Mahler expan-
sion.

Lemma 5.21. Let f ∈ C(Zp), and let f(x) =
∑∞
n=0 αn

(
x
n

)
be the Mahler expansion of f . Then

the Mahler expansion of ∆f is given by

∆f(x) =
∞∑
n=0

αn+1

(
x

n

)
.

Proof (non-examinable). By Pascal’s triangle, we have(
x+ 1

n

)
=

(
x

n

)
+

(
x

n− 1

)
,

where we take
( ·
−1
)

:= 0. Thus,

∆f(x) = f(x+ 1)− f(x)

=

∞∑
n=0

αn

((
x+ 1

n

)
−
(
x

n

))

=

∞∑
n=1

αn

(
x

n− 1

)

=

∞∑
n=0

αn+1

(
x

n

)

Corollary 5.22. Let f ∈ C(Zp), and let f(x) =
∑∞
n=0 αn

(
x
n

)
be the Mahler expansion of f . Then

the coefficients are given by
αn = (∆nf)(0),

where ∆nf = ∆ . . .∆︸ ︷︷ ︸
n

f is the function obtained by applying ∆ n-times to f .

Proof. Note that α0 = f(0). Repeatedly applying ∆ to f we obtain by Lemma 5.21 that

∆nf(0) =

∞∑
m=0

αm+n

(
0

m

)
= αn.
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A good way to think of ∆ as a ‘discrete’ version of differentiation. Indeed, then the fact that the
Mahler expansion is given by

f(x) =

∞∑
n=0

(∆nf)(0)

(
x

n

)
,

mimics the classical Maclaurin expansion (the Taylor expansion at x = 0) from the real world,

f(x) =

∞∑
n=0

f (n)(0)xn.

where f (n) is the nth derivative of the function f . An important thing to note is that this compar-
ison is not perfect: Maclaurin expansions only exist for differentiable functions (not all continuous
functions on R) whereas Mahler expansions are for all continuous functions Zp → Qp. A better
real-world expansion to compare to is the fourier expansion of a continuous function f : [a, b]→ R,
which you may see if you are familiar with this.

Comparison 5.23

Example 5.24. Let us compute one of these Mahler expansions in a concrete situation. We’ll take
p = 11 and f(x) = x3. In order to express f(x) =

∑∞
n=0 αn

(
x
n

)
we directly compute

∆0f(x) = f(x) = x3

∆1f(x) = f(x+ 1)− f(x) = 3x2 + 3x+ 1

∆2f(x) =
(
3(x+ 1)2 + 3(x+ 1) + 1

)
−
(
3x2 + 3x+ 1

)
= 6x+ 6

∆3f(x) = 6

∆nf(x) = 0 n ≥ 4.

Hence, evaluating these at 0, we get x3 =
(
x
1

)
+ 6
(
x
2

)
+ 6
(
x
3

)
. Indeed, from this example it seems quite

clear that for a general polynomial f(x), once n > deg(f) we must have αn = 0 (see the example
sheets).

Our method of determining the Mahler expansion of a continuous function f will be to compute
∆nf(0) for each n. For a fixed n (say n = 2), this is easy to do directly. To do this for all n is also
not usually too hard, and typically relies on some combinatorial trickery. We conclude this section by
thinking about Zp-powers of elements in Zp, much like taking R-powers in R. We shall see more of
this in the exercise sheets.

Example 5.25. For each positive integer x we have 3x = (1 + 2)x =
∑∞
n=0

(
x
n

)
2n. We can extend this

to a function on Z2 now by defining for each α ∈ Z2

3α :=

∞∑
n=0

2n
(
α

n

)
.

Note that this sum clearly converges for all α ∈ Z2 since by Lemma 5.18 we have∣∣∣∣2n(xn
)∣∣∣∣

2

≤ 2−n,

which goes to 0 as n→∞ and by Proposition 3.7 this proves that the sum converges.
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Epilogue (non-examinable)
We are now at the end of our introduction to the p-adic numbers. We have touched on several facets
of the p-adic world, looking at results from algebraic, analytic, and topological angles. Throughout
the course we have compared Qp with the trusty old real numbers R, and hopefully you have seen
that in fact this exotic and sometimes unintuitive p-adic world can also be much nicer. This begs the
question: where to next? What other completions are there of Q besides Qp and R? The answer to
this question is: nowhere, we have seen every completion that there is! A theorem of Ostrowski shows
that every nontrivial completion of Q is either Qp for some prime number p or the real numbers.

Whilst we may have met all of the completions, this course has only been a small taste of the p-adic
universe that awaits an intrepid adventurer – and there is so much more that we do not have the time
to see! The p-adic numbers are a fundamental concept in number theory, but have touched various
other worlds also. For example, there is a beautiful theorem of Monsky (1970) which says that it is
not possible to dissect a square into an odd number of triangles of equal area. The proof of this result
uses the 2-adic numbers.

In number theory, the p-adic numbers are very useful. If f is a polynomial in n variables with
coefficients in Q then we wish to determine whether there are rational numbers a1, . . . , an ∈ Q with

f(a1, . . . , an) = 0. (4)

As we have discussed in the course, it is a necessary criterion that such a solution exists in Qp for
every prime number p and also in R. This may lead us to hope that the converse statement is true:

if (4) has solutions in Qp for every p and in R, then there is a solution in Q.
This statement is known as the Hasse principle, and it does not always hold! Below are examples.

• The Hasse principle holds when f is a homogeneous polynomial of degree 2 with coefficients in
Q, for example f(x1, . . . , x6) = x21 + 2x22 + 500x26. This is the Hasse–Minkowski theorem.

• The Hasse principle fails if f(x, y, z) = 3x3 + 4y3 + 5z3, an example due to Selmer (1951).
Similarly, it is false if f(x) = (x2 − 2)(x2 + 7)(x2 − 14) – for this one it is a worthwhile revision
exercise to check that (4) has solutions in Qp for every p, and it is clear that x =

√
2 is a solution

in R. But it clearly has no solutions in Q since none of 2,−7, 34 are rational squares.

Classifying when the Hasse principle holds or does not hold is a large open problem in number theory,
and a subject of very active research.

Even when we know that there are solutions, it is often very hard to know if we have written down
all of them! For example the ‘cursed curve’ is given by the equation

y4 + 5x4 − 6x2y2 + 6x3z+ 26x2yz+ 10xy2z− 10y3z− 32x2z2 − 40xyz2 + 24y2z2 + 32xz3 − 16yz3 = 0,

which had been a famously difficult equation to study until 2017 when Balakrishnan–Dogra–Müller–
Tuitman–Vonk determined the solutions in Q. Their work uses the p-adic numbers fundamentally.

For future reading on p-adic numbers, you should know that Qp is an example of a local field, and
books often discuss them in that context. Some excellent books which read further in this world are
listed below – go forth, and explore!
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A Definitions from the past

Real Analysis

Definition A.1. Let (rn)n be a sequence of real numbers, and r ∈ R. Then we say that r is the
limit superior of the sequence (rn)n if the following holds.

• For every ε > 0 there exists an integer N such that for all n > N we have rn < r + ε.

• For every ε > 0 and every integer N there exists an integer n > N with rn > r − ε.

We write r = lim sup
n→∞

rn if this holds. If no such r exists then we write lim sup
n→∞

rn =∞. Moreover,

if limn→∞ rn exists, then it is equal to the limit superior:

lim
n→∞

rn = lim sup
n→∞

rn.

Metric Spaces

Definition A.2. A metric d on a set S is a function d : S × S → R such that for all x, y, z ∈ S
the following hold:

• (triviality) d(x, x) = 0;

• (positivity) if x 6= y then d(x, y) > 0;

• (symmetry) d(x, y) = d(y, x);

• (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).
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