Introduction to the *p*-adic numbers Exercise Sheet 4

Ross Paterson

This exercise sheet is split into sections:

- A extremely concrete computations to help unpack definitions;
- B theoretical questions which use only major results/definitions in the course;
- C theoretical results requiring some thought.

The recommended approach is to focus primarily on sections B and C once you are comfortable. You should only answer questions in section A where you're not confident with the definitions of the objects involved.

Section A

- 1. Compute the Mahler expansion for each of the following continuous functions $f: \mathbb{Z}_p \to \mathbb{Q}_p$ (for all p):
 - (a) $f(X) = X^7 + 1$
 - (b) $f(X) = X^5 + X + 3$
 - (c) $f(X) = X^4 + X^3 + X^2 + X + 1$
- 2. Recall the continuous function $\mathbf{a_0}: \mathbb{Z}_p \to \mathbb{Q}_p$, defined on p-adic expansions by $\mathbf{a_0}\left(\sum_{k=0}^{\infty} a_k p^k\right) = a_0$. Compute the first 3 terms of the Mahler expansion of $\mathbf{a_0}$ for:
 - (a) p = 2
 - (b) p = 3
 - (c) p = 5
- 3. Draw (an approximation of)
 - (a) \mathbb{Z}_5 ;
 - (b) $5\mathbb{Z}_5 = \{x \in \mathbb{Z}_5 : x \equiv 0 \mod 5\};$
 - (c) $1 + 5\mathbb{Z}_5 = \{x \in \mathbb{Z}_5 : x \equiv 1 \mod 5\}.$

Section B

4. Show that for every continuous function $f: \mathbb{Z}_p \to \mathbb{Q}_p$ we have

$$(\Delta^n f)(0) = \sum_{k=0}^n (-1)^k \binom{n}{k} f(n-k).$$

- 5. Let $f(x) = \frac{1}{(x^2+1)}$.
 - (a) Show that f(x) is defined for all $x \in \mathbb{Z}_3$.
 - (b) Show that f(x) is continuous as a function $\mathbb{Z}_3 \to \mathbb{Q}_3$.
 - (c) Determine the first 4 coefficients in the Mahler expansion of f(x).

6. (Lemma 5.18) Show that for every $n \geq 0$ and every $\alpha \in \mathbb{Z}_p$ we have

$$\binom{\alpha}{n} \in \mathbb{Z}_p.$$

[Hint: look back at how you did Q6 on sheet 1!]

- 7. Show that if f(x) is a polynomial of degree d with Mahler expansion $f(x) = \sum_{n=0}^{\infty} \alpha_n {x \choose n}$ then for all $n \ge d+1$ we have $\alpha_n = 0$.
- 8. (Lemma 5.10) Prove that if $X \subseteq \mathbb{Q}_p$ and $f, g: X \to \mathbb{Q}_p$ are continuous functions then both the sum f+g and product fg are continuous.

Section C

- 9. Let $f(x) = \frac{1}{(x^4+1)}$, and let p be a prime number such that $p \not\equiv 1 \mod 8$.
 - (a) Show that f(x) defined for all $x \in \mathbb{Z}_p$.
 - (b) Show that f(x) is continuous as a function $\mathbb{Z}_p \to \mathbb{Q}_p$.
 - (c) Determine the first 4 coefficients of the Mahler expansion of f(x).
- 10. Let $\alpha \in \mathbb{Z}_p$, then define a continuous function of $x \in \mathbb{Z}_p$ which is equal to $(1+p\alpha)^x$ when $x \in \mathbb{Z}$.
- 11. We say that a metric space X is totally disconnected if every pair of elements can be separated by open sets. That is, for every pair of elements $x \neq y \in X$ there exist open sets $U_x, U_y \subseteq X$ such that the following all hold:
 - $U_x \cap U_y = \emptyset$;
 - $x \in U_x$ and $y \in U_y$;
 - $U_x \cup U_y = X$.

Show that \mathbb{Q}_p is totally disconnected.

- 12. We say that a metric space X is *compact* if every open cover of X has a finite subcover. That is, for every collection of open subsets $(U_i)_{i\in I}$ satisfying $\cup_{i\in I}U_i=X$, there is a finite subset $J\subseteq I$ such that $X=\cup_{i\in J}U_i$.
 - (a) Prove that \mathbb{Z}_p is compact.
 - (b) Show that \mathbb{Q}_p is not compact.