Introduction to the p-adic numbers Exercise Sheet 2

Ross Paterson

This exercise sheet is split into three sections:

- A extremely concrete computations to help unpack definitions;
- B theoretical questions which use only major results/definitions in the course;
- C theoretical results requiring some thought.

The recommended approach is to focus primarily on sections B and C once you are comfortable. You should only answer questions in section A where you're not confident with the definitions of the objects involved.

Section A

- 1. Find the first 3 non-zero terms in the 5-adic expansion of x + y for each of the following
 - (a) x = -3 and $y = \frac{32}{25}$.
 - (b) $x = \frac{1}{3}$ and y = 156.
- 2. Find the first 3 non-zero terms in the 5-adic expansion of xy for each of the following
 - (a) x = -3 and $y = \frac{32}{25}$.
 - (b) $x = \frac{1}{3}$ and y = 156.

Section B

- 3. Which of the following sequences converge in \mathbb{Q}_p ?
 - (a) $\left(\frac{1}{n}\right)_n$
 - (b) $(n!)_n$
 - (c) $(np^n + 2p)_n$
- 4. Which of the following series are convergent in \mathbb{Q}_p ?
 - (a) $\sum_{n=1}^{\infty} n!$.
 - (b) $\sum_{n=1}^{\infty} \frac{1}{n}$.
 - (c) $\sum_{n=1}^{\infty} (4^n 1)^n$ when p = 2
 - (d) $\sum_{n=1}^{\infty} (4^n 1)^n$ when p = 3.
- 5. Show that every convergent sequence in \mathbb{Q}_p is Cauchy. [Hint: the same is true in any metric space.]
- 6. Let $(\alpha_n)_n$ be a Cauchy sequence in \mathbb{Q}_p , and let $\alpha_n = \sum_{k=v_p(\alpha_n)}^{\infty} a_{n,k} p^k$ be the *p*-adic expansion. Define $x_n := \sum_{k=v_p(\alpha_n)}^{n} a_{n,k} p^k$ to be the sum of the terms up to the *n*th digit in the expansion of α_n . Show that $(x_n)_n$ is a Cauchy sequence.

Section C

7. (p-Adic Ratio Tests) Let $(\alpha_n)_n$ be a sequence of elements in \mathbb{Q}_p , and assume that the limit

$$\lambda := \lim_{n \to \infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right|_p$$

exists.

- (a) Show that the series $\sum_{n=1}^{\infty} \alpha_n$ converges if $\lambda < 1$, and diverges if $\lambda > 1$.
- (b) Assume that $\lambda \neq 0$. Let $x \in \mathbb{Q}_p$, and consider the power series $\sum_{n=1}^{\infty} \alpha_n x^n$. Deduce that this converges if $|x|_p < 1/\lambda$ and diverges if $|x|_p > 1/\lambda$.
- 8. Using the previous question, or otherwise, determine for which $X \in \mathbb{Q}_p$ the following series converge.
 - (a) $\sum_{n=1}^{\infty} X^n$;
 - (b) $\sum_{n=1}^{\infty} \frac{X^n}{p^n};$ (c) $\sum_{n=1}^{\infty} p^n X^n;$ (d) $\sum_{n=1}^{\infty} (pn)! X^n$