Introduction to the p-adic numbers Exercise Sheet 1

Ross Paterson

This exercise sheet is split into three sections:

- A extremely concrete computations to help unpack definitions;
- B theoretical questions which use only major results/definitions in the course;
- C theoretical results requiring some thought.

The recommended approach is to focus primarily on sections B and C once you are comfortable. You should only answer questions in section A where you're not confident with the definitions of the objects involved.

Section A

- 1. Compute the following
 - (a) $v_3(-54)$
 - (b) $v_5(0.0625)$
 - (c) $v_2(4!)$
- 2. Compute the following for every prime number p
 - (a) $|12|_p$
 - (b) $\left|\frac{753}{20}\right|_p$
 - (c) $\left|\frac{23}{18}\right|_p$
- 3. Compute the 2-adic expansion of x for
 - (a) x = 617
 - (b) $x = \frac{89}{4}$
- 4. Determine the first 3 non-zero digits in the 5-adic expansion of x for
 - (a) x = 1/3
 - (b) x = -1/4
 - (c) x = 3/2
- 5. Which of the following are Cauchy sequences with respect to $|\cdot|_2$?
 - (a) $a_n := 2^n$
 - (b) $a_n := \sum_{k=0}^n 2^k$

Section B

- 6. Let $x \in \mathbb{Q}$ be a rational number with p-adic expansion $\sum_{k=v}^{\infty} a_k p^k$.
 - (a) Determine the p-adic expansion of -x.

- (b) If $x \in \mathbb{Z}$, then show that the digits in the *p*-adic expansion of x are eventually all (p-1) or eventually all 0.
- (c) Determine the *p*-adic expansion of $\frac{1}{1-p}$.
- 7. Let n be a positive integer, and let $n = a_t p^t + \cdots + a_1 p + a_0$ be its p-adic expansion. We will determine the valuation of the factorial n!.
 - (a) Show that

$$v_p(n!) = \sum_{k=1}^t \left\lfloor \frac{n}{p^k} \right\rfloor.$$

(b) Let $s := a_0 + a_1 + \cdots + a_t$ be the sum of the p-adic digits of n. Show that

$$v_p(n!) = \frac{n-s}{p-1}.$$

- (c) Use this to determine $|n!|_p$ in terms of the *p*-adic expansion of *n*.
- 8. In this question we show that *p*-adic triangles have to be isosceles. Recall that a triangle is isosceles if two of its sides are of the same length.

Let $x,y,z\in\mathbb{Q}$ be the vertices of our triangle. Assume that one side length is different to the other two, i.e. both $|x-y|_p\neq |x-z|_p$ and $|x-y|_p\neq |y-z|_p$. Show that the other two side lengths must be the same, i.e. $|y-z|_p=|x-z|_p$.

- 9. Let $x \in \mathbb{Q}$, we will investigate some identities which use 'all p' simultaneously.
 - (a) Show that if $x \neq 0$ then

$$||x|| \prod_p |x|_p = 1.$$

- (b) Show that $x \in \mathbb{Z}$ if and only if $|x|_p \leq 1$ for every prime number p.
- 10. Let $N \geq 2$ be an integer which is *not* a prime. For $x, y \in \mathbb{Z} \setminus \{0\}$, define

$$v_N(x) := \max \{ n \in \mathbb{Z} : N^n \mid x \},$$
 $v_N\left(\frac{x}{y}\right) = v_N(x) - v_N(y),$

and set $v_N(0) := \infty$. If $|\cdot|_N = N^{-v_N(\cdot)}$, then:

- is this well defined? What conditions should we add if not?
- when this is well defined, what properties from Proposition 1.9 hold or fail for $|\cdot|_N$?

Give proofs or counterexamples!

Section C

- 11. In this exercise we will prove that the *p*-adic expansion of a rational number is eventually periodic (Lemma 1.21 in the notes). You may wish to make use of your answer to Question 6 here! Let $x \in \mathbb{Q}$, and write $x = \lim_{N \to \infty} {p \choose k=v} \sum_{k=v}^{N} a_k p^k$ for the *p*-adic expansion.
 - (a) Show that the p-adic expansion of x is eventually periodic if and only if the same is true for -x. Hence we can reduce to the case x < 0.
 - (b) Explain why the p-adic expansion of x is eventually periodic if and only if the same is true for $p^k x$ for every $k \in \mathbb{Z}$. Hence can assume that $|x|_p = 1$.
 - (c) Show that if x and y have eventually periodic p-adic expansions then so does x + y.

- (d) Using the previous parts and Question 6(b), show that we may reduce to the case -1 < x < 0 and $|x|_p = 1$.
- (e) We now prove the reduced case. Write $x = \frac{a}{b}$ for a, b coprime to p, a < 0, b > 1.
 - i. Show that there exists a positive integer k such that $p^k \equiv 1 \mod b$.
 - ii. Rewrite x in such a way that its denominator is $1 p^k$.
 - iii. Show that the p-adic expansion of x is periodic.
- 12. Let $x \in \mathbb{Q}$. Consider the sequence $(e_n)_{n \geq 0}$ where

$$e_n := \sum_{i=0}^n \frac{x^i}{i!}.$$

Show that $(e_n)_{n\geq 0}$ is a Cauchy sequence with respect to $|\cdot|_p$ in each of the following regimes

- (a) if p > 2 and $|x|_p < 1$;
- (b) if p = 2 and $|x|_p < 1/2$.