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COURSE: RACHEL NEWTON
NOTES: ROSS PATERSON

Disclaimer. These notes were taken live during lectures at the Introduction
to SAGA winter school held at the CIRM from 30th January to 3rd February
2023. Any errors are the fault of the transcriber and not of the lecturer.

Note: all rings and algebras are assumed to be associative and unital.

Lecture 1

1. The Brauer Group of a Local Ring

Throughout this section, let R denote a commutative local ring, with maximal
ideal m and residue field k = R/m.

Definition 1. An Azumaya algebra A over R is a free R-algebra which is finitely
generated as an R-module such that A⊗R k is a central simple algebra (CSA) over
k.

Definition 2. Two Azumaya algebras A,B/R are equivalent if there exist n,m ∈
Z>0 such that

Mn(A) ∼= Mm(B)

as R-algebras. Write [A] for the equivalence class of A with respect to this relation.

Definition 3. The Brauer group Br(R) is the set of equivalence classes of Azumaya
algebras over R with group operation induced by tensor product over R. The
identity element is clearly [R], and it is easy to show that the inverse of [A] is, in
general, [Aopp].

Theorem 4. Let R be a regular integral domain. Then

Br(R)→ Br(Frac(R))

A 7→ A⊗R Frac(R)

is an injection.

Proof. Auslander & Goldman, Theorem 7.2. �

2. The Brauer Group of a Variety

Let X/K be a nice (i.e. smooth, quasi-projective, and irreducible) variety over
a number field.

Definition 5. BrAz(X) :=
⋂
P∈X(K) Br(OX,P ), where the intersection is taken in

Br(k(X)) via Theorem 4.
1
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Theorem 6 (Grothendieck). In fact,

BrAz(X) = H2
ét(X,Gm) =: Br(X),

and Br(X) is a torsion abelian group.

Remark 7. We are using the niceness assumptions here: in general there is a differ-
ence between the Brauer group (in terms of Azumaya algebras) and the cohomo-
logical Brauer group.

Definition 8. For A ∈ Br(OX,P ), write A(P ) for the image of A under the map

Br(OX,P )→ Br(k(P ))

A 7→ A⊗OX,P
k(P )

where k(P ) is the residue field at P : OX,P /mX,P .

Thus for all P ∈ X(K) we have evaluation maps

Br(X)→ Br(k(P ))

coinciding with the maps

Br(X) = H2
ét(X,Gm)→ H2(k(P ),Gm) = Br(k(P )).

Notation 9. For a number field K, we write

AK =
∏
v∈ΩK

′
Kv :=

{
(xv)v ∈

∏
v∈ΩK

Kv : xv ∈ Ov for all but finitely many v

}
.

Remark 10. If X is projective, then X(AK) =
∏
v∈ΩK

X(Kv)

Theorem 11 (Manin). There is a pairing (called the Brauer-Manin pairing)

〈,〉BM : X(AK)× Br(X)→ Q/Z

〈(Pv)v,A〉BM =
∑
v∈ΩK

invv(A(Pv)),

such that X(K) ⊆ X(AK)Br := {(Pv)v ∈ X(AK) : ∀A ∈ Br(X), 〈(Pv)v, A〉BM = 0}.

Remark 12. Here X(K) means the closure in the adelic points, and the inclusion
follows from Albert–Brauer–Hasse–Noether together with the continuity of evalua-
tion maps.

Definition 13. If X(AK) 6= ∅, but X(AK)Br = ∅ then immediately from Theo-
rem 11 we see X(K) = ∅, and in this case we say that there is a Brauer–Manin
obstruction to the Hasse principle.

Definition 14. Weak approximation holds for X if X(K) = X(AK). Note that if
X(AK)Br 6= X(AK) then by Theorem 11 weak approximation cannot hold, and we
say there is a Brauer–Manin obstruction to weak approximation.

Definition 15. The constant elements of the Brauer group are

Br0(X) := im(Br(K)→ Br(X)).

The algebraic elements of the Brauer group are

Br1(X) := ker(Br(X)→ Br(X)),
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where X := X ×K K for K a seperable closure. One can show (indeed, it is in the
exercises!) that

Br0(X) ⊆ Br1(X).

The transcendental elements of the Brauer group are

Br(X)\Br1(X).

Exercise 16. Show that the Brauer–Manin pairing factors through Br(X)/Br0(X).

3. Br1(X)

Let X/K be a smooth, projective, geometrically irreducible variety over a field of
characteristic 0. Let K/K be a choice of algebraic closure, and let Γ := Gal(K/K).
The Hochschild–Serre spectral sequence yields an exact sequence

0 Pic(X) Pic(X)Γ Br(K)

Br1(X) H1(K,Pic(X)) H3(K,K
×

).

(∗)

(∗)

The rightmost group is 0 if K is a number field. Moreover, the (∗) maps are 0 if
X(K) 6= ∅. So Br1(X)/Br0(X) ↪→ H1(K,Pic(X)), and is an isomorphism if K is a
number field.

Lecture 2

4. Br(X)/Br1(X)

Let X/K be a smooth projective geometrically irreducible variety over a field
K ⊆ C. Recall that, by definition,

Br(X)/Br1(X) ↪→ Br(X).

Thus, to bound and control the non-algebraic part of the Brauer group it makes
sense to study the geometric Brauer group. For this there is an exact sequence of
Grothendieck.

Theorem 17 (Grothendieck). There is an exact sequence

0 Q/Zb2−ρ Br(X) H3(X,Z)tors 0,

where b2 is the second Betti number, and ρ = rk(NS(X))

Of course, even now, just knowing the structure of the geometric Brauer group
as a group isn’t going to give us explicit Azumaya algebras and so we’re going to
want to work at this.

Remark 18. If b2 − ρ 6= 0 then Br(X) is infinite.

Note that since our variety is defined over K we actually have

Br(X)/Br1(X) ↪→ Br(X)GK .

In particular, we don’t need the whole geometric Brauer group to be finite, just the
set of fixed points. This was observed and used by Skorobogatov–Zarhin.
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Theorem 19 (Skorobogatov–Zarhin). Let K/Q be finitely generated. If X/K is a
principal homogeneous space of an abelian variety A/K, so that X ∼= A over K, or
a K3-surface, then in fact

#Br(X)GK <∞

In particular, we obtain the following.

Corollary 20. If X/K is a K3-surface over a finitely generated extension of Q
then Br(X)/Br0(X) is finite (see exercises).

Structure of the proof of Theorem 19.
Step 1. Show that for every prime `,

Br(X)GK [`∞] :=
⋃
n≥1

Br(X)GK [`n]

is finite. See the exercises.
Step 2. Show that for all but finitely many primes `,

Br(X)GK [`] = 0

See Skorobogatov–Zarhin 2008. �

5. Uniform Bounds

We will proceed by analogy to elliptic curves, where a famous uniformity result
is known.

Theorem 21 (Merel: strong uniform boundedness for elliptic curves). Given d ∈
Z>0, there is a constant c(d) such that

#E(K)tors < c(d)

for every elliptic curve E/K and number field K/Q with [K : Q] = d.

For a curve of genus g, the canonical class has degree 2g − 2, so curves of genus
1 are precisely those with trivial canonical sheaf. Surfaces with trivial canonical
sheaf come in two flavours:

• Abelian surfaces, where dimH1(X,OX) = 2;
• K3-surfaces where dimH1(X,OX) = 0.

Maybe these should be analogous to elliptic curves, and there should be some
analogue to Merel’s theorem here. What is the correct analogue of torsion in the
elliptic curve here though? Well note that for an elliptic curve over a number field,
denoted E/K, we have

E(K)tors ∼= Pic0(E)GK
tors

P 7→ [P ]− [OE ].

Moreover, noting the exact sequence

0 Pic0E PicE NS(E) 0

Z

deg

∼
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we have

Pic0(E)GK
tors = Pic(E)GK

tors

= H1
ét(E,Gm)

= im
(
H1

ét(E,Gm)tors → H1
ét(E,Gm)tors

)
= im

(
HdimE

ét (E,Gm)tors → HdimE
ét (E,Gm)tors

)
.

So for X an abelian or K3 surface, perhaps

im
(
HdimX

ét (X,Gm)tors → HdimX
ét (X,Gm)tors

)
= im

(
Br(X)→ Br(X)

)
might be the right analogue of E(K)tors. Indeed, for each X, Br(X)/Br1(X) is
finite by Theorem 19, so we can actually ask for uniformity.

Question 22 (Varilly-Alvarado & Viray). Let X be a smooth projective surface over
a number field K with trivial canonical sheaf. Is there a bound for Br(X)/Br1(X)
that is independent of X, depending only on dimH1(X,OX) (i.e. whether X is K3
or abelian), NS(X) (as an abstract lattice, no Galois action!) and [K : Q]?

In fact, X/K with K characteristic 0 it turns out that Br1(X)/Br0(X) is uni-
formly bounded over all K3-surfaces, so really we could ask about Br(X)/Br0(X).

Conjecture 23 (Varilly-Alvarado–Viray). The answer to Question 22 is yes for
K3-surfaces, and in fact this bounds Br(X)/Br0(X) uniformly.

The first main result on this conjecture was then the following.

Theorem 24 (Orr–Skorobogatov). Conjecture 23 holds for all CM K3-surfaces
over number fields with a constant C = C([K : Q]) which is even independent of
the lattice NS(X).

Why should we want to bound this? One reason is the following.

Theorem 25 (Kresch–Tschinkel, Poonen–Testa–van Luijk). Let X/K be a K3-
surface over a number field, given by a system of homogeneous polynomial equations.
Then the Brauer–Manin set X(Ak)Br(X) is effectively computable, provided that

|Br(X)/Br0(X)|
can be bounded effectively.

There is then a conjecture of Skorobogatov.

Conjecture 26 (Skorobogatov). For X/K a K3-surface over a number field, the
Brauer–Manin obstruction is the only one. That is:

X(K) = X(AK)Br(X).

If Conjecture 26 holds then together with Theorem 25 and effective bounds we
would have an effective method to determine whether X(K) 6= ∅ for X/K a K3-
surface over a number field – c.f. Hilbert’s 10th problem!

For recent progress on effective bounds, see e.g.
• Hasset–Kresch–Tschinkel 2012;
• Cantoral-Farfán–Tang–Tanimoto–Visse 2016;
• Várilly-Alvarado–Viray 2020;
• Balestrieri–Johnson–Newton 2022.

Lecture 3
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6. The Brauer–Manin Pairing

Question 27 (Swinnerton-Dyer). Let X/K be a nice (smooth proj. geom. int.)
variety over a number field. Assume that Pic(X) is finitely generated and torsion-
free. Let S ⊂ ΩK be a finite set of places of K containing all archimedean places
and all places of bad reduction for X.

Is there an open and closed set Z ⊂
∏
v∈S X(Kv) such that the Brauer-Manin

set is given by
X(AK)Br(X) = Z ×

∏
v 6∈S

X(Kv)?

That is, are the only places that play a role in the Brauer–Manin obstruction the
archimedean ones and those of bad reduction?

Theorem 28 (Colliot-Thélène–Skorobogatov). Let X/K be as in Question 27, and
assume that the transcendental part of the Brauer group, Br(X)/Br1(X), is finite.
If v is a finite place of good reduction for X and its residue characteristic is coprime
to #Br(X)/Br1(X) then for all A ∈ Br(X)

|A| : X(Kv)→ Q/Z
P 7→ invv(A(P ))

is constant. In particular the answer to Question 27 is yes if S contains all primes
dividing Br(X)/Br1(X).

However it turns out that the answer to the question is no in general.

Theorem 29 (M. Pagano). Let X ⊆ P3
Q be the K3-surface with equation

x3y + y3z + z3w + w3x+ xyzw = 0.

Then 2 is a prime of good reduction for X,

A =

(
z3 + w2x+ xyz

x3
,
−z
x

)
∈ Br(X)[2]

and |A| : X(Q2) → 1
2Z/Z is non-constant. So in particular the answer to Ques-

tion 27 can be no, even for K3-surfaces over Q.

We can ask is there any finite set S which does all the work?

Theorem 30 (Bright–Newton). Let X/K be as in Question 27. Let S ⊆ ΩK be a
finite set of places comprising:

(i) archimedean v;
(ii) places of bad reduction for X;
(iii) v such that ev/p ≥ p − 1, where p is the residue characteristic of v and ev

the ramification index at v of K/Q;
(iv) v such that H0(X (v),Ω1) 6= 0 where X (v) is the special fibre at v of a

smooth model for X.
Then ∀A ∈ Br(X) and all primes v 6∈ S,

|A| : X(Kv)→ Q/Z
is constant.

Remark 31. (1) If X/K is a K3-surface and v is a place of good reduction then
X (v) is K3 and hence H0(X (v),Ω1) = 0.
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(2) If X/Q is K3 then the set of finite good places satisfying (iii) is simply 2.
In particular Theorem 29 is optimal in its case.

Ingredients of proof of Theorem 30. Let v 6∈ S, with residue characteristic p, and
let A ∈ Br(X). We want to show that

|A| : X(Kv)→ Q/Z
is constant. This is a purely local question.

Notation 32. We adopt the following notation:
• k a p-adic field;
• π a uniformizer;
• F the residue field;
• X/k smooth geometrically irreducible variety;
• X /Ok a smooth model;
• Y = X ×Ok

F special fibre, assumed to be geometrically irreducible.

Suppose Q ∈ X(k) extends to X (Ok) and has reduction Q0 ∈ Y (F). Then the
following diagram commutes, where Br(X)(p′) is the prime-to-p torsion in Br(X):

Br(X)(p′) H1(Y,Q/Z)

Br(k) H1(F,Q/Z)

Q

δ

Q0

δ∼=

where the left vertical map is A 7→ A(Q), δ is the residue map, and the right vertical
is evaluation at Q0.

Corollary 33. If A has order coprime to p then A(Q) only depends on Q0.

This is not true for A ∈ Br(X)[pr]. Classifying elements of the Brauer group
Br(X) according to the π-adic accuracy needed to evaluate them yields a filtration
on Br(X). We then relate this to Kato’s filtration by Swan conductor (see Kato
1989):

fil0Br(X) ⊆ fil1Br(X) ⊆ fil2Br(X) ⊆ . . .
sw(A) is then the least n such that A ∈ filnBr(X). Kato extends the residue map
to fil0Br(X) ⊇ Br(X)(p′).

Theorem 34 (Kato). For n ≥ 1, there exists an injection

rswn :
filnBr(X)

filn−1Br(X)
↪→ H0(Y,Ω2)⊕H0(Y,Ω1)

A 7→ (α, β) = rsw(A),

which we call the ‘refined swan conductor’.

To prove Theorem 30 we use properties of rsw (for example that nα = dβ). Let
A ∈ filnBr(X), for v 6∈ S we have H0(Y,Ω1) = 0 so β = 0. When ev/p < p− 1, we
show that β = 0 =⇒ α = 0 and hence filnBr(X) = filn−1Br(X).
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