JACOBIANS & MODELS PART II

COURSE: TIM DOKCHITSER NOTES: ROSS PATERSON

DISCLAIMER. These notes were taken live during lectures at the Introduction to SAGA winter school held at the CIRM from 30^{th} January to 3^{rd} February 2023. Any errors are the fault of the transcriber and not of the lecturer.

Lecture 1

There is a whole formalism where starting with a variety V/\mathbb{Q} , one obtains Galois representations and L-functions. Many conjectures are concerned with this: BSD, Langlands, Riemann hypothesis, etc..

You might think this is interesting, but then you see the definitions

$$L(H^{i}(V), s) = \prod_{p} \frac{1}{F_{p}(p^{-s})},$$

where $F_p(T) := \det \left(1 - \operatorname{Frob}_p^{-1} T \mid \operatorname{H}^i_{\operatorname{\acute{e}t}}(V_{\overline{\mathbb{Q}_p}}, \mathbb{Q}_\ell)^{I_p} \right)$. At this point maybe you decide to go do something else with your life...

Nonetheless we shall aim to explain this, especially for H^1 of curves.

1. Semistable Curves over \mathbb{F}_p

Let V/\mathbb{F}_p be a projective variety, with $n = \dim V$. Let $\ell \neq p$ be a prime and consider the étale cohomology groups

$$H^{i}(V) := \mathrm{H}^{i}_{\mathrm{\acute{e}t}}(V_{\overline{\mathbb{F}_{n}}}, \mathbb{Q}_{\ell})$$

for $0 \leq i \leq 2n$. These are ℓ -adic representations of $G_{\mathbb{F}_p}$, which is isomorphic to \mathbb{Z} with canonical topological generator given by Frobenius Frob : $x \mapsto x^p$. Moreover, since the representation is continuous, the action of frobenius completely determines the representation: in other words, only one matrix matters!

If semisimple (known for curves and abelian varieties), then this is determined completely by the characteristic polynomial

$$L_i(T) := \det \left(1 - \operatorname{Frob}^{-1}T \mid H^i(V) \right)$$

Facts:

- $H^0(V) = \mathbb{Q}_{\ell} V_1 \oplus \cdots \oplus \mathbb{Q}_{\ell} V_n$, where V_i are the connected components of $V_{\mathbb{F}_p}$. In particular, if $V_{\mathbb{F}_p}$ is connected then $H^0(V) \cong \mathbb{Q}_{\ell}$ and $L_0(T) = 1 - T$.
- $H^{2n}(V) = \mathbb{Q}_{\ell}(n)I_1 \oplus \cdots \oplus \mathbb{Q}_{\ell}(n)I_k$ where I_j are the irreducible components of $V_{\mathbb{F}_p}$ and $\mathbb{Q}_{\ell}(n)$ is the 1-dimensional representation with Frob acting as p^{-n} . In particular if $V_{\mathbb{F}_p}$ is irreducible then $H^{2n}(V) \cong \mathbb{Q}_{\ell}(n)$ and so $L_{2n}(T) = 1 p^n T$

TIM DOKCHITSER

• If V = C is a smooth geometrically irreducible curve, then

$$H^1(C) = \left(V_\ell \operatorname{Jac}(C)\right)^{\vee},$$

is the dual of the Tate module.

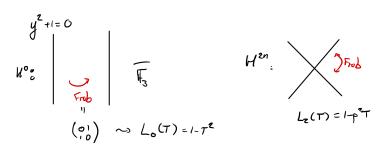
• There is a zeta function

$$Z(T) := \exp\left(\sum_{k \ge 1} \frac{V(\mathbb{F}_{p^k})}{k} T^k\right) = \frac{L_1(T)L_3(T)\dots L_{2n-1}(T)}{L_0(T)L_2(T)\dots L_2n(T)}.$$

• If V is smooth then $L_i(T) = \prod_j (1 - \alpha_j^{(i)}T)$ for some $\alpha_j^{(i)} \in \mathbb{C}$ with $\left|\alpha_j^{(i)}\right| = p^{i/2}$

The final two are consequences of the Weil conjectures, and in particular we can compute all the $L_i(T)$ from knowing $\#V(\mathbb{F}_{p^k})$ for all the $k \geq 1$.

Example 1. $y^2 + 1 = 0$ over \mathbb{F}_3 decomposes as two lines which are swapped by Frobenius and so Frob acts as $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ on $H^0(V)$, and has characteristic polynomial $L_0(T) = 1 - T^2$.



Similarly, looking at the action on the lines above we note that $H^2(V)$ has characteristic polynomial $L_2(T) = 1 - p^2 T^2$.

Example 2. Consider $C: y^2 = x^2(x+1)/\mathbb{F}_p$. Then this is a split nodal cubic over \mathbb{F}_p , and

$$#C(\mathbb{F}_p^k) = \{(0,0)\} \cup \mathbb{F}_{p^k}^{\times}$$

In particular $\#C(\mathbb{F}_{p^k}) = p^k$. Thus

$$Z(T) = \exp\left(\sum_{k \ge 1} \frac{p^k}{k} T^k\right) = \exp\left(-\log(1 - pT)\right) = \frac{1}{1 - pT} = \frac{L_1(T)}{L_0(T)L_2(T)}.$$

We compute that $L_0(T) = 1 - T$ since the curve is connected, and that $L_2(T) = 1 - pT$ since the curve is irreducible, and so via the Weil conjectures

$$Z(T) = \frac{1 - T}{(1 - T)(1 - pT)}$$

so $L_1(T) = 1 - T$. This then tells us that our $H^1(C)$ is the one-dimensional trivial representation

$$\mathrm{H}^{1}_{\mathrm{\acute{e}t}}(C_{\mathbb{F}_{p}}, \mathbb{Q}_{\ell}) \cong \mathbb{Q}_{\ell}.$$

 $\mathbf{2}$

Example 3. Consider $y^2 = x^2(x + \eta)$ where $\eta \in \mathbb{F}_p^{\times} \setminus \mathbb{F}_p^{\times 2}$ then we have a nonsplit nodal cubic. Then

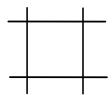
$$#C(\mathbb{F}_{p^k}) = p^k + 1 - (-1)^k,$$

and so we compute

$$Z(T) = \frac{1+T}{(1-T)(1-pT)}$$

so $L_1(T) = 1 + T$. We leave it as an exercise to write down what the Galois action on cohomology is.

Example 4. C four copies of \mathbb{P}^1 arranged in a square, say obtained from reducing a regular model of a type I_4 elliptic curve over \mathbb{Q}_p .



For example: $y^2 = x^3 + x^2 + p^4$. Then we count

$$#C(\mathbb{F}_{p^k}) = 4(p^k + 1) - 4 = 4p^k,$$

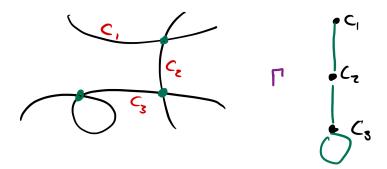
and $L_0(T) = 1 - T$, $L_2(T) = (1 - pT)^4$. Computing Zeta we get

$$Z(T) = \exp(-4\log(1-pT)) = \frac{1}{(1-pT)^4} = \frac{1-T}{(1-T)(1-pT)^4},$$

and so $L_1(T) = 1 - T$.

In general if C/\mathbb{F}_p is a *semistable* curve (i.e. only ordinary double points as singularities) then write $\tilde{C}_1, \ldots, \tilde{C}_m$ for the normalisations of the irreducible components of $C/\overline{\mathbb{F}_p}$.

Definition 5. The dual group Γ is then the graph with *m* vertices, labelled by the components, and edges corresponding to each double point. We view this as a topological space.



Then it is not hard to see that

TIM DOKCHITSER

Theorem 6. We have a decomposition into an abelian part and a toric part:

$$H^1(C) = H^1_{\rm ab}(C) \oplus H^1_t(C),$$

where

$$H^1_{\rm ab}(C) = H^1(\tilde{C}_1) \oplus \cdots \oplus H^1(\tilde{C}_m)$$

and

$$H^1_t(C) = H^1_{top}(\Gamma, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q}_\ell.$$

Note that both the abelian and the toric part carry an action of $G_{\mathbb{F}_p}$, moreover we get that the eigenvalues on the abelian part have absolute value $p^{1/2}$ and on the toric part they have absolute value 1.

Remark 7. The dimension of the toric part is the number of loops in Γ .

Lecture 2

2. Semistable curves over \mathbb{Q}_p

Recall the exact sequence

$$1 \to I_p \to G_{\mathbb{Q}_p} \to G_{\mathbb{F}_p} \to 1$$

where I_p is the inertia subgroup, and we fix a lift $\text{Frob} \in G_{\mathbb{Q}_p}$ of the map $x \mapsto x^p$ in $G_{\mathbb{F}_p}$.

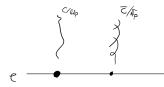
Let C/\mathbb{Q}_p be a nice (smooth projective absolutely irreducible) genus g curve over \mathbb{Q}_p . Our goal will be to completely describe the action of Galois on 2g-dimensional \mathbb{Q}_{ℓ} -vector space

$$H^1(C) := \mathrm{H}^1_{\mathrm{\acute{e}t}}(C_{\overline{\mathbb{Q}_p}}, \mathbb{Q}_\ell) = (V_\ell \mathrm{Jac}(C))^{\vee}$$

and the characteristic polynomial

$$F(T) = \det(1 - \operatorname{Frob}^{-1} | H^1(C)^{I_p}),$$

in terms of the geometry of a regular model \mathscr{C}/\mathbb{Z}_p and its special fibre $\overline{C}/\mathbb{F}_p$.



Example 8. If C has good reduction, meaning \overline{C} is smooth, then I_p acts trivially on $H^1(C)$ and

$$H^1(C) \cong H^1(\overline{C})$$

as $G_{\mathbb{F}_p}$ -reps, and

$$F(T) = L_1(\overline{C}, T)$$

For elliptic curves this is Ogg-Shafarevich, in general it is Serre-Tate.

Example 9 (Tate curve). If C = E is an elliptic curve with split multiplicative reduction then recall that there is an isomorphism (as $G_{\mathbb{Q}_p}$ -module)

$$E(\overline{\mathbb{Q}_p}) \cong \overline{\mathbb{Q}_p}^{\times}/q^{\mathbb{Z}}$$

for some $q \in p\mathbb{Z}_p$. Note that clearly

$$E[\ell^n] \cong \langle \zeta_{\ell^n}, \sqrt[\ell^n]{q} \rangle.$$

This shows that the action of $G_{\mathbb{Q}_p}$ on the Tate module $T_{\ell}E$ is given by

$$\begin{pmatrix} \chi_{\ell} & \tau_{\ell} \\ 0 & 1 \end{pmatrix}$$

where χ_{ℓ} is the ℓ -adic cyclotomic character and τ_{ℓ} is the tame chracter. Thus on $H^{1}(E)$ the action is given by

$$\begin{pmatrix} \chi_{\ell}^{-1} & 0\\ \tau_{\ell} & 1 \end{pmatrix} =: \operatorname{Sp}_2.$$

Thus it is clear that $H^1(E)^{I_p} = \mathbb{Q}_{\ell}$ and F(T) = 1 - T.

In general we have the following theorem of Grothendieck for semistable curves.

Theorem 10 (Grothendieck). Let C/\mathbb{Q}_p be a nice curve with demistable reduction. Then

$$H^1(C)^{I_p} \cong H^1(\overline{C}),$$

and

$$H^1(C) \cong H^1_{ab}(\overline{C}) \oplus (H^1_t(\overline{C}) \otimes \operatorname{Sp}_2)$$

where $H^1_t(\overline{C}) \otimes \operatorname{Sp}_2 = H^1_{top}(\Gamma, \mathbb{Z}) \otimes \operatorname{Sp}_2$ for Γ the dual graph of \overline{C} .

Example 11. If C is of genus 2, then there are 7 semistable types

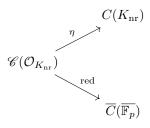
 $\begin{array}{c} F\left(\mathcal{T}\right) : \mathcal{L}_{i}(\epsilon_{i}, \tau) \mathcal{L}_{i}(\epsilon_{t}, \tau) & F(\tau) := \left(i - \tau\right)_{i}^{Z} \\ \left(i + \tau\right)_{i}^{Z} : i - \tau^{Z}, i + \tau^{Z} \\ & \xi_{rer, c_{SS}} \end{array}$

3. General Curves

Notation 12. We will take

- C/\mathbb{Q}_p a nice (smooth proj. geom. irr.) curve;
- K/\mathbb{Q}_p a finite Galois extension for which C/K has semistable reduction;
- $\mathscr{C}/\mathcal{O}_K$ the minimal regular model over \mathcal{O}_K ;
- \overline{C} the special fibre;
- Γ the dual graph of \overline{C} .

Then we have maps



Theorem 13 (Dokchitser–Dokchitser–Morgan). There is a semilinear action $G_{\mathbb{Q}_p}$ on $\overline{C}(\overline{\mathbb{F}_p})$ given on non-singular points by, for $\sigma \in G_{\mathbb{Q}_p}$

$$\overline{C}(\overline{\mathbb{F}_p}) \xrightarrow{\operatorname{red}^{-1}} \mathscr{C}(\mathcal{O}_{K_{\operatorname{nr}}}) \xrightarrow{\eta} C(K_{\operatorname{nr}}) \xrightarrow{\sigma} C(K_{\operatorname{nr}}) \xrightarrow{\eta^{-1}} \mathscr{C}(\mathcal{O}_{K_{\operatorname{nr}}}) \longrightarrow \overline{C}(\overline{\mathbb{F}_p})$$

It induces actions on the dual graph Γ , $H^1_t(\overline{C})$, $H^1_{ab}(\overline{C})$ and

$$H^1(C) \cong H^1_{ab}(\overline{C}) \oplus H^1_t(\overline{C}) \otimes \operatorname{Sp}_2$$

as $G_{\mathbb{Q}_p}$ -modules

Example 14. $C: y^2 = x^3 + p^4/\mathbb{Q}_p$ for p > 3. This has type IV additive reduction. $K = \mathbb{Q}_p(\sqrt[3]{p})$, write $\pi = \sqrt[3]{p}$. Take a substitution: $X = x/p\pi$, $Y = y/p^2$ then

$$\begin{split} C/K: y^2 &= x^3 + p^4 \xleftarrow{\eta} \mathscr{C}/\mathcal{O}_K: Y^2 = X^3 + 1 \\ & \downarrow^{\mathrm{red}} \\ \overline{C}/\mathbb{F}_p: Y^3 = X^3 + 1 \end{split}$$

For example, $\sigma \in I_p$ acts as

$$\overline{C}(\overline{\mathbb{F}_p}) \ni (X,Y) \xrightarrow{\text{lift}} (\tilde{X},\tilde{Y}) \xrightarrow{\eta} (\pi p \tilde{X}, p^2 \tilde{Y})$$

$$(\sigma(\pi)p \tilde{X}, p^2 \tilde{Y}) \xrightarrow{\epsilon} (\frac{\sigma(\pi)}{\pi} \tilde{X}, \tilde{Y}) \longrightarrow (\frac{\sigma(\pi)}{\pi} x, y)$$

Let $\psi: I_{\mathbb{Q}_p} \to \mu_3$ be the character $\sigma \mapsto \sigma(\pi)/\pi$, then we find that I_p acts on $H^1(C)$ as

$$\begin{pmatrix} \psi & 0 \\ 0 & \psi^{-1} \end{pmatrix}.$$

In particular, $H^1(C)^{I_p} = 0$ and F(T) = 1.

In fact F(T) = 1 for every elliptic curve with additive reduction.

Question 15. How do we find K and C in practice? E.g. for hyperelliptic curves when p = 2?