JACOBIANS \& MODELS PART II

COURSE: TIM DOKCHITSER
NOTES: ROSS PATERSON

Abstract

Disclaimer. These notes were taken live during lectures at the Introduction to SAGA winter school held at the CIRM from $30^{\text {th }}$ January to $3^{\text {rd }}$ February 2023. Any errors are the fault of the transcriber and not of the lecturer.

Lecture 1

There is a whole formalism where starting with a variety V / \mathbb{Q}, one obtains Galois representations and L-functions. Many conjectures are concerned with this: BSD, Langlands, Riemann hypothesis, etc..

You might think this is interesting, but then you see the definitions

$$
L\left(H^{i}(V), s\right)=\prod_{p} \frac{1}{F_{p}\left(p^{-s}\right)}
$$

where $F_{p}(T):=\operatorname{det}\left(1-\operatorname{Frob}_{p}^{-1} T \mid \mathrm{H}_{\text {ét }}^{i}\left(V_{\overline{\mathbb{Q}_{p}}}, \mathbb{Q}_{\ell}\right)^{I_{p}}\right)$. At this point maybe you decide to go do something else with your life...

Nonetheless we shall aim to explain this, especially for H^{1} of curves.

1. Semistable Curves over \mathbb{F}_{p}

Let V / \mathbb{F}_{p} be a projective variety, with $n=\operatorname{dim} V$. Let $\ell \neq p$ be a prime and consider the étale cohomology groups

$$
H^{i}(V):=\mathrm{H}_{\mathrm{et}}^{i}\left(V_{\overline{\mathbb{F}_{p}}}, \mathbb{Q}_{\ell}\right)
$$

for $0 \leq i \leq 2 n$. These are ℓ-adic representations of $G_{\mathbb{F}_{p}}$, which is isomorphic to $\widehat{\mathbb{Z}}$ with canonical topological generator given by Frobenius Frob : $x \mapsto x^{p}$. Moreover, since the representation is continuous, the action of frobenius completely determines the representation: in other words, only one matrix matters!

If semisimple (known for curves and abelian varieties), then this is determined completely by the characteristic polynomial

$$
L_{i}(T):=\operatorname{det}\left(1-\operatorname{Frob}^{-1} T \mid H^{i}(V)\right)
$$

Facts:

- $H^{0}(V)=\mathbb{Q}_{\ell} V_{1} \oplus \cdots \oplus \mathbb{Q}_{\ell} V_{n}$, where V_{i} are the connected components of $V_{\overline{\mathbb{F}}_{p}}$. In particular, if $V_{\overline{\mathbb{F}_{p}}}$ is connected then $H^{0}(V) \cong \mathbb{Q}_{\ell}$ and $L_{0}(T)=1-T$.
- $H^{2 n}(V)=\mathbb{Q}_{\ell}(n) I_{1} \oplus \cdots \oplus \mathbb{Q}_{\ell}(n) I_{k}$ where I_{j} are the irreducible components of $V_{\mathbb{F}_{p}}$ and $\mathbb{Q}_{\ell}(n)$ is the 1-dimensional representation with Frob acting as p^{-n}. In particular if $V_{\overline{\mathbb{F}_{p}}}$ is irreducible then $H^{2 n}(V) \cong \mathbb{Q}_{\ell}(n)$ and so $L_{2 n}(T)=1-p^{n} T$
- If $V=C$ is a smooth geometrically irreducible curve, then

$$
H^{1}(C)=\left(V_{\ell} \operatorname{Jac}(C)\right)^{\vee}
$$

is the dual of the Tate module.

- There is a zeta function

$$
Z(T):=\exp \left(\sum_{k \geq 1} \frac{V\left(\mathbb{F}_{p^{k}}\right)}{k} T^{k}\right)=\frac{L_{1}(T) L_{3}(T) \ldots L_{2 n-1}(T)}{L_{0}(T) L_{2}(T) \ldots L_{2} n(T)}
$$

- If V is smooth then $L_{i}(T)=\prod_{j}\left(1-\alpha_{j}^{(i)} T\right)$ for some $\alpha_{j}^{(i)} \in \mathbb{C}$ with $\left|\alpha_{j}^{(i)}\right|=$ $p^{i / 2}$
The final two are consequences of the Weil conjectures, and in particular we can compute all the $L_{i}(T)$ from knowing $\# V\left(\mathbb{F}_{p^{k}}\right)$ for all the $k \geq 1$.

Example 1. $y^{2}+1=0$ over \mathbb{F}_{3} decomposes as two lines which are swapped by Frobenius and so Frob acts as $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ on $H^{0}(V)$, and has characteristic polynomial $L_{0}(T)=1-T^{2}$.

Similarly, looking at the action on the lines above we note that $H^{2}(V)$ has characteristic polynomial $L_{2}(T)=1-p^{2} T^{2}$.

Example 2. Consider $C: y^{2}=x^{2}(x+1) / \mathbb{F}_{p}$. Then this is a split nodal cubic over \mathbb{F}_{p}, and

$$
\# C\left(\mathbb{F}_{p}^{k}\right)=\{(0,0)\} \cup \mathbb{F}_{p^{k}}^{\times}
$$

In particular $\# C\left(\mathbb{F}_{p^{k}}\right)=p^{k}$. Thus

$$
Z(T)=\exp \left(\sum_{k \geq 1} \frac{p^{k}}{k} T^{k}\right)=\exp (-\log (1-p T))=\frac{1}{1-p T}=\frac{L_{1}(T)}{L_{0}(T) L_{2}(T)}
$$

We compute that $L_{0}(T)=1-T$ since the curve is connected, and that $L_{2}(T)=$ $1-p T$ since the curve is irreducible, and so via the Weil conjectures

$$
Z(T)=\frac{1-T}{(1-T)(1-p T)}
$$

so $L_{1}(T)=1-T$. This then tells us that our $H^{1}(C)$ is the one-dimensional trivial representation

$$
\mathrm{H}_{e ̂ t}^{1}\left(C_{\mathbb{F}_{p}}, \mathbb{Q}_{\ell}\right) \cong \mathbb{Q}_{\ell}
$$

Example 3. Consider $y^{2}=x^{2}(x+\eta)$ where $\eta \in \mathbb{F}_{p}^{\times} \backslash \mathbb{F}_{p}^{\times 2}$ then we have a nonsplit nodal cubic. Then

$$
\# C\left(\mathbb{F}_{p^{k}}\right)=p^{k}+1-(-1)^{k}
$$

and so we compute

$$
Z(T)=\frac{1+T}{(1-T)(1-p T)}
$$

so $L_{1}(T)=1+T$. We leave it as an exercise to write down what the Galois action on cohomology is.

Example 4. C four copies of \mathbb{P}^{1} arranged in a square, say obtained from reducing a regular model of a type I_{4} elliptic curve over \mathbb{Q}_{p}.

For example: $y^{2}=x^{3}+x^{2}+p^{4}$. Then we count

$$
\# C\left(\mathbb{F}_{p^{k}}\right)=4\left(p^{k}+1\right)-4=4 p^{k}
$$

and $L_{0}(T)=1-T, L_{2}(T)=(1-p T)^{4}$. Computing Zeta we get

$$
Z(T)=\exp (-4 \log (1-p T))=\frac{1}{(1-p T)^{4}}=\frac{1-T}{(1-T)(1-p T)^{4}}
$$

and so $L_{1}(T)=1-T$.
In general if C / \mathbb{F}_{p} is a semistable curve (i.e. only ordinary double points as singularities) then write $\tilde{C}_{1}, \ldots, \tilde{C_{m}}$ for the normalisations of the irreducible components of $C / \overline{\mathbb{F}_{p}}$.

Definition 5. The dual group Γ is then the graph with m vertices, labelled by the components, and edges corresponding to each double point. We view this as a topological space.

Then it is not hard to see that

Theorem 6. We have a decomposition into an abelian part and a toric part:

$$
H^{1}(C)=H_{\mathrm{ab}}^{1}(C) \oplus H_{t}^{1}(C)
$$

where

$$
H_{\mathrm{ab}}^{1}(C)=H^{1}\left(\tilde{C_{1}}\right) \oplus \cdots \oplus H^{1}\left(\tilde{C_{m}}\right)
$$

and

$$
H_{t}^{1}(C)=H_{\mathrm{top}}^{1}(\Gamma, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell}
$$

Note that both the abelian and the toric part carry an action of $G_{\mathbb{F}_{p}}$, moreover we get that the eigenvalues on the abelian part have absolute value $p^{1 / 2}$ and on the toric part they have absolute value 1.
Remark 7. The dimension of the toric part is the number of loops in Γ.

LECTURE 2

2. Semistable curves over \mathbb{Q}_{p}

Recall the exact sequence

$$
1 \rightarrow I_{p} \rightarrow G_{\mathbb{Q}_{p}} \rightarrow G_{\mathbb{F}_{p}} \rightarrow 1
$$

where I_{p} is the inertia subgroup, and we fix a lift Frob $\in G_{\mathbb{Q}_{p}}$ of the map $x \mapsto x^{p}$ in $G_{\mathbb{F}_{p}}$.

Let C / \mathbb{Q}_{p} be a nice (smooth projective absolutely irreducible) genus g curve over \mathbb{Q}_{p}. Our goal will be to completely describe the action of Galois on $2 g$-dimensional \mathbb{Q}_{ℓ}-vector space

$$
H^{1}(C):=\mathrm{H}_{\text {êt }}^{1}\left(C_{\overline{\mathbb{Q}_{p}}}, \mathbb{Q}_{\ell}\right)=\left(V_{\ell} \operatorname{Jac}(C)\right)^{\vee}
$$

and the characteristic polynomial

$$
F(T)=\operatorname{det}\left(1-\operatorname{Frob}^{-1} \mid H^{1}(C)^{I_{p}}\right)
$$

in terms of the geometry of a regular model $\mathscr{C} / \mathbb{Z}_{p}$ and its special fibre \bar{C} / \mathbb{F}_{p}.

Example 8. If C has good reduction, meaning \bar{C} is smooth, then I_{p} acts trivially on $H^{1}(C)$ and

$$
H^{1}(C) \cong H^{1}(\bar{C})
$$

as $G_{\mathbb{F}_{p}}$-reps, and

$$
F(T)=L_{1}(\bar{C}, T)
$$

For elliptic curves this is Ogg-Shafarevich, in general it is Serre-Tate.
Example 9 (Tate curve). If $C=E$ is an elliptic curve with split multiplicative redution then recall that there is an isomorphism (as $G_{\mathbb{Q}_{p}}$-module)

$$
E\left(\overline{\mathbb{Q}_{p}}\right) \cong{\overline{\mathbb{Q}_{p}}}^{\times} / q^{\mathbb{Z}}
$$

for some $q \in p \mathbb{Z}_{p}$. Note that clearly

$$
E\left[\ell^{n}\right] \cong\left\langle\zeta_{\ell^{n}}, \sqrt[\ell^{n}]{q}\right\rangle
$$

This shows that the action of $G_{\mathbb{Q}_{p}}$ on the Tate module $T_{\ell} E$ is given by

$$
\left(\begin{array}{cc}
\chi_{\ell} & \tau_{\ell} \\
0 & 1
\end{array}\right)
$$

where χ_{ℓ} is the ℓ-adic cyclotomic character and τ_{ℓ} is the tame chracter. Thus on $H^{1}(E)$ the action is given by

$$
\left(\begin{array}{cc}
\chi_{\ell}^{-1} & 0 \\
\tau_{\ell} & 1
\end{array}\right)=: \mathrm{Sp}_{2}
$$

Thus it is clear that $H^{1}(E)^{I_{p}}=\mathbb{Q}_{\ell}$ and $F(T)=1-T$.
In general we have the following theorem of Grothendieck for semistable curves.
Theorem 10 (Grothendieck). Let C / \mathbb{Q}_{p} be a nice curve with demistable reduction. Then

$$
H^{1}(C)^{I_{p}} \cong H^{1}(\bar{C})
$$

and

$$
H^{1}(C) \cong H_{\mathrm{ab}}^{1}(\bar{C}) \oplus\left(H_{t}^{1}(\bar{C}) \otimes \mathrm{Sp}_{2}\right)
$$

where $H_{t}^{1}(\bar{C}) \otimes \mathrm{Sp}_{2}=H_{\text {top }}^{1}(\Gamma, \mathbb{Z}) \otimes \mathrm{Sp}_{2}$ for Γ the dual graph of \bar{C}.
Example 11. If C is of genus 2, then there are 7 semistable types

3. General Curves

Notation 12. We will take

- C / \mathbb{Q}_{p} a nice (smooth proj. geom. irr.) curve;
- K / \mathbb{Q}_{p} a finite Galois extension for which C / K has semistable reduction;
- $\mathscr{C} / \mathcal{O}_{K}$ the minimal regular model over \mathcal{O}_{K};
- \bar{C} the special fibre;
- Γ the dual graph of \bar{C}.

Then we have maps

Theorem 13 (Dokchitser-Dokchitser-Morgan). There is a semilinear action $G_{\mathbb{Q}_{p}}$ on $\bar{C}\left(\overline{\mathbb{F}_{p}}\right)$ given on non-singular points by, for $\sigma \in G_{\mathbb{Q}_{p}}$

$$
\bar{C}\left(\overline{\mathbb{F}_{p}}\right) \xrightarrow{\mathrm{red}^{-1}} \mathscr{C}\left(\mathcal{O}_{K_{\mathrm{nr}}}\right) \xrightarrow{\eta} C\left(K_{\mathrm{nr}}\right) \xrightarrow{\sigma} C\left(K_{\mathrm{nr}}\right) \xrightarrow{\eta^{-1}} \mathscr{C}\left(\mathcal{O}_{K_{\mathrm{nr}}}\right) \longrightarrow \bar{C}\left(\overline{\mathbb{F}_{p}}\right)
$$

It induces actions on the dual graph $\Gamma, H_{t}^{1}(\bar{C}), H_{\mathrm{ab}}^{1}(\bar{C})$ and

$$
H^{1}(C) \cong H_{\mathrm{ab}}^{1}(\bar{C}) \oplus H_{t}^{1}(\bar{C}) \otimes \mathrm{Sp}_{2}
$$

as $G_{\mathbb{Q}_{p}}$-modules
Example 14. $C: y^{2}=x^{3}+p^{4} / \mathbb{Q}_{p}$ for $p>3$. This has type $I V$ additive reduction. $K=\mathbb{Q}_{p}(\sqrt[3]{p})$, write $\pi=\sqrt[3]{p}$. Take a substitution: $X=x / p \pi, Y=y / p^{2}$ then

$$
\begin{array}{r}
C / K: y^{2}=x^{3}+p^{4} \longleftarrow \longleftarrow_{\eta} \mathscr{C} / \mathcal{O}_{K}: Y^{2}=X^{3}+1 \\
\downarrow_{\text {red }} \\
\bar{C} / \mathbb{F}_{p}: Y^{3}=X^{3}+1
\end{array}
$$

For example, $\sigma \in I_{p}$ acts as

Let $\psi: I_{\mathbb{Q}_{p}} \rightarrow \mu_{3}$ be the character $\sigma \mapsto \sigma(\pi) / \pi$, then we find that I_{p} acts on $H^{1}(C)$ as

$$
\left(\begin{array}{cc}
\psi & 0 \\
0 & \psi^{-1}
\end{array}\right)
$$

In particular, $H^{1}(C)^{I_{p}}=0$ and $F(T)=1$.
In fact $F(T)=1$ for every elliptic curve with additive reduction.
Question 15. How do we find K and \mathscr{C} in practice? E.g. for hyperelliptic curves when $p=2$?

