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Lecture 1
There is a whole formalism where starting with a variety V/Q, one obtains Galois
representations and L-functions. Many conjectures are concerned with this: BSD,
Langlands, Riemann hypothesis, etc..

You might think this is interesting, but then you see the definitions

L(Hi(V ), s) =
∏
p

1

Fp(p−s)
,

where Fp(T ) := det
(

1− Frob−1p T | Hiét(VQp
,Q`)Ip

)
. At this point maybe you de-

cide to go do something else with your life...
Nonetheless we shall aim to explain this, especially for H1 of curves.

1. Semistable Curves over Fp
Let V/Fp be a projective variety, with n = dimV . Let ` 6= p be a prime and

consider the étale cohomology groups

Hi(V ) := Hiét(VFp
,Q`)

for 0 ≤ i ≤ 2n. These are `-adic representations of GFp
, which is isomorphic to Ẑ

with canonical topological generator given by Frobenius Frob : x 7→ xp. Moreover,
since the representation is continuous, the action of frobenius completely determines
the representation: in other words, only one matrix matters!

If semisimple (known for curves and abelian varieties), then this is determined
completely by the characteristic polynomial

Li(T ) := det
(
1− Frob−1T | Hi(V )

)
Facts:
• H0(V ) = Q`V1⊕· · ·⊕Q`Vn, where Vi are the connected components of VFp

.
In particular, if VFp

is connected then H0(V ) ∼= Q` and L0(T ) = 1− T .
• H2n(V ) = Q`(n)I1 ⊕ · · · ⊕ Q`(n)Ik where Ij are the irreducible compo-

nents of VFp
and Q`(n) is the 1-dimensional representation with Frob act-

ing as p−n. In particular if VFp
is irreducible then H2n(V ) ∼= Q`(n) and so

L2n(T ) = 1− pnT
1
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• If V = C is a smooth geometrically irreducible curve, then

H1(C) = (V`Jac(C))
∨
,

is the dual of the Tate module.
• There is a zeta function

Z(T ) := exp

∑
k≥1

V (Fpk)

k
T k

 =
L1(T )L3(T ) . . . L2n−1(T )

L0(T )L2(T ) . . . L2n(T )
.

• If V is smooth then Li(T ) =
∏
j(1−α

(i)
j T ) for some α(i)

j ∈ C with
∣∣∣α(i)
j

∣∣∣ =

pi/2

The final two are consequences of the Weil conjectures, and in particular we can
compute all the Li(T ) from knowing #V (Fpk)for all the k ≥ 1.

Example 1. y2 + 1 = 0 over F3 decomposes as two lines which are swapped by

Frobenius and so Frob acts as
(

0 1
1 0

)
on H0(V ), and has characteristic polynomial

L0(T ) = 1− T 2.

Similarly, looking at the action on the lines above we note that H2(V ) has charac-
teristic polynomial L2(T ) = 1− p2T 2.

Example 2. Consider C : y2 = x2(x+ 1)/Fp. Then this is a split nodal cubic over
Fp, and

#C(Fkp) = {(0, 0)} ∪ F×
pk
.

In particular #C(Fpk) = pk. Thus

Z(T ) = exp

∑
k≥1

pk

k
T k

 = exp (− log(1− pT )) =
1

1− pT
=

L1(T )

L0(T )L2(T )
.

We compute that L0(T ) = 1 − T since the curve is connected, and that L2(T ) =
1− pT since the curve is irreducible, and so via the Weil conjectures

Z(T ) =
1− T

(1− T )(1− pT )
,

so L1(T ) = 1−T . This then tells us that our H1(C) is the one-dimensional trivial
representation

H1
ét(CFp ,Q`) ∼= Q`.
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Example 3. Consider y2 = x2(x+ η) where η ∈ F×p \F×2p then we have a nonsplit
nodal cubic. Then

#C(Fpk) = pk + 1− (−1)k,

and so we compute

Z(T ) =
1 + T

(1− T )(1− pT )

so L1(T ) = 1 + T . We leave it as an exercise to write down what the Galois action
on cohomology is.

Example 4. C four copies of P1 arranged in a square, say obtained from reducing
a regular model of a type I4 elliptic curve over Qp.

For example: y2 = x3 + x2 + p4. Then we count

#C(Fpk) = 4(pk + 1)− 4 = 4pk,

and L0(T ) = 1− T , L2(T ) = (1− pT )4. Computing Zeta we get

Z(T ) = exp(−4 log(1− pT )) =
1

(1− pT )4
=

1− T
(1− T )(1− pT )4

,

and so L1(T ) = 1− T .

In general if C/Fp is a semistable curve (i.e. only ordinary double points as singu-
larities) then write C̃1, . . . , C̃m for the normalisations of the irreducible components
of C/Fp.

Definition 5. The dual group Γ is then the graph with m vertices, labelled by
the components, and edges corresponding to each double point. We view this as a
topological space.

Then it is not hard to see that
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Theorem 6. We have a decomposition into an abelian part and a toric part:

H1(C) = H1
ab(C)⊕H1

t (C),

where
H1

ab(C) = H1(C̃1)⊕ · · · ⊕H1(C̃m),

and
H1
t (C) = H1

top(Γ,Z)⊗Z Q`.
Note that both the abelian and the toric part carry an action of GFp

, moreover we
get that the eigenvalues on the abelian part have absolute value p1/2 and on the toric
part they have absolute value 1.

Remark 7. The dimension of the toric part is the number of loops in Γ.

Lecture 2

2. Semistable curves over Qp
Recall the exact sequence

1→ Ip → GQp
→ GFp

→ 1

where Ip is the inertia subgroup, and we fix a lift Frob ∈ GQp of the map x 7→ xp

in GFp .
Let C/Qp be a nice (smooth projective absolutely irreducible) genus g curve over

Qp. Our goal will be to completely describe the action of Galois on 2g-dimensional
Q`-vector space

H1(C) := H1
ét(CQp

,Q`) = (V`Jac(C))∨

and the characteristic polynomial

F (T ) = det(1− Frob−1 | H1(C)Ip),

in terms of the geometry of a regular model C /Zp and its special fibre C/Fp.

Example 8. If C has good reduction, meaning C is smooth, then Ip acts trivially
on H1(C) and

H1(C) ∼= H1(C)

as GFp
-reps, and

F (T ) = L1(C, T ).

For elliptic curves this is Ogg–Shafarevich, in general it is Serre–Tate.

Example 9 (Tate curve). If C = E is an elliptic curve with split multiplicative
redution then recall that there is an isomorphism (as GQp

-module)

E(Qp) ∼= Qp
×
/qZ

for some q ∈ pZp. Note that clearly

E[`n] ∼= 〈ζ`n , `n
√
q〉 .
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This shows that the action of GQp
on the Tate module T`E is given by(

χ` τ`
0 1

)
where χ` is the `-adic cyclotomic character and τ` is the tame chracter. Thus on
H1(E) the action is given by (

χ−1` 0
τ` 1

)
=: Sp2.

Thus it is clear that H1(E)Ip = Q` and F (T ) = 1− T .

In general we have the following theorem of Grothendieck for semistable curves.

Theorem 10 (Grothendieck). Let C/Qp be a nice curve with demistable reduction.
Then

H1(C)Ip ∼= H1(C),

and

H1(C) ∼= H1
ab(C)⊕

(
H1
t (C)⊗ Sp2

)
where H1

t (C)⊗ Sp2 = H1
top(Γ,Z)⊗ Sp2 for Γ the dual graph of C.

Example 11. If C is of genus 2, then there are 7 semistable types

3. General Curves

Notation 12. We will take
• C/Qp a nice (smooth proj. geom. irr.) curve;
• K/Qp a finite Galois extension for which C/K has semistable reduction;
• C /OK the minimal regular model over OK ;
• C the special fibre;
• Γ the dual graph of C.

Then we have maps
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C(Knr)

C (OKnr)

C(Fp)

η

red

Theorem 13 (Dokchitser–Dokchitser–Morgan). There is a semilinear action GQp

on C(Fp) given on non-singular points by, for σ ∈ GQp

C(Fp) C (OKnr) C(Knr) C(Knr) C (OKnr) C(Fp)red−1 η σ η−1

It induces actions on the dual graph Γ, H1
t (C), H1

ab(C) and

H1(C) ∼= H1
ab(C)⊕H1

t (C)⊗ Sp2
as GQp-modules

Example 14. C : y2 = x3 +p4/Qp for p > 3. This has type IV additive reduction.
K = Qp( 3

√
p), write π = 3

√
p. Take a substitution: X = x/pπ, Y = y/p2 then

C/K : y2 = x3 + p4 C /OK : Y 2 = X3 + 1

C/Fp : Y 3 = X3 + 1

η

red

For example, σ ∈ Ip acts as

C(Fp) 3 (X,Y ) (X̃, Ỹ ) (πpX̃, p2Ỹ )

(σ(π)pX̃, p2Ỹ ) (σ(π)π X̃, Ỹ ) (σ(π)π x, y)

lift η

σ

η−1

Let ψ : IQp → µ3 be the character σ 7→ σ(π)/π, then we find that Ip acts on H1(C)
as (

ψ 0
0 ψ−1

)
.

In particular, H1(C)Ip = 0 and F (T ) = 1.

In fact F (T ) = 1 for every elliptic curve with additive reduction.

Question 15. How do we find K and C in practice? E.g. for hyperelliptic curves
when p = 2?
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