
GALOIS REPRESENTATIONS AND MODULAR FORMS

COURSE: ANNA MEDVEDOVSKY & ALEXANDRU GHITZA
NOTES: ROSS PATERSON

Disclaimer. These notes were taken live during lectures at the Introduction
to SAGA winter school held at the CIRM from 30th January to 3rd February
2023. Any errors are the fault of the transcriber and not of the lecturer.

Lecture 1 (Medvedovsky): Galois Groups
Our plan will be to try to cover the following:

• Galois Groups
• Galois Representations
• Tate Modules of Elliptic Curves
• Modular Forms attached to Galois Representations
• Mod-p phenomena

1. Galois Groups

Let K be a field (e.g. Fp, Qp, Q), and K be an algebraic closure. Note that if
K
′
is a second algebraic closure of K then the two are (non-canonically) isomorphic

via some σ. This isomorphism is in no way canonical, and when we form the Galois
groups Gal(K/K) ∼= Gal(K

′
/K) the induced isomorphism is

τ 7→ στσ−1.

This is to say: there are no good elements, only good conjugacy classes.
Note that GK := Gal(K/K) := lim←−

L/K

Gal(L/K), where the limit is now over

finite Galois extensions, with the maps being restriction maps: forM/L/K we have
res : Gal(M/K)→ Gal(L/K). In particular, GK is a profinite group and so comes
with an associated Krull topology. In this topology a basis of open neighbourhoods
of 1 the subgroups Gal(K/L) for finite Galois L/K – they’re very large! Galois
correspondence in this setting says that closed subgroups H ≤ GK correspond to
extensions M = K

H
/K, and that open subgroups further correspond to the finite

suck extensions. Moreover normal (closed) subgroups, as for finite Galois theory,
correspond to Galois extensions of K.

1.1. Finite Fields. K = Fq where q = pd for some prime p. For L/K some finite
extension, we know L = Fqn for some n and moreover that Gal(L/K) ∼= Z/nZ
with isomorphism given by mapping frobenius (x 7→ xq) to the element 1 ∈ Z/nZ.
Taking an inverse limit we obtain

GK = lim←−
L/K

Z/nZ = Ẑ =
∏

` prime

Z`.

1
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1.2. Local Fields. K/Qp finite, having an absolute value |·| : K → R≥0, integers
OK , maximal ideal mK , residue field kK . Then for every finite extension L/K the
absolute value extends uniquely to L. We then have a short exact sequence

1→ I(L/K)→ Gal(L/K)→ Gal(kL/kK)→ 1,

where I(L/K) is the so-called ‘inertia subgroup’. This gives us a maximal unram-
ified extension Lnr := LI(L/K). Note that Gal(Lnr/K) ∼= Gal(kL/kK) is cyclic by
§1.1. Then we take an inverse limit to obtain

1→ IK → GK → GkK → 1,

where now GkK
∼= Ẑ as in §1.1. In this setting IK is quite complicated. It has a

huge (normal) p-sylow subgroup Iwild
K , the quotient by which is tame inertia Itame

K .
We denote by Knr := K

IK the maximal unramified extension.

1.3. Number Fields. K/Q finite, so a number field. We’d like to look at this
locally and try to patch together information from the local fields. Ostrowski’s
theorem says (for ΩK the set of equivalence classes of absolute values on K),

v ∈ ΩK ↔

{
primes p | p of OK (finite places) where Kv/Qp is finite
(K → C)/(complex conjugation) (infinite places) where Kv = R or C

Then for each v ∈ ΩK there may be several places w ∈ ΩL such that w | v. However,
Gal(L/K) acts transitively on {w ∈ ΩL : w | v}, and for a choice of w | v we have
the stabiliser Dw := stabGal(L/K)(w) which is known as the ‘decomposition group
of w’. Note that the elements of {Dw : w | v} are all conjugate subgroups inside
of Gal(L/K). Moreover, it is not hard to show that

Dw
∼= Gal(Lw/Kv),

and soDw ⊇ Iw where Iw is the inertia for the extension Lw/Kv (see §1.2). Taking a
compatible system of w | v for each L/K finite (so w | w′ | v whenever L ⊇ L′ ⊇ K)
is equivalent to choosing an embedding K → Kv, and then we can take a limit to
obtain the inertia group

Iv := lim←−
Lw/Kv

I(Lw/Kv)

where the limit is over our compatible system.
To close: let S ⊆ ΩK be a finite set of places, and let

GK,S := GK/
Smallest normal subgroup

containing Iv ∀ v 6∈S = Gal(Knr,S/K),

where Knr,S/K is the maximal extension of K unramified for v 6∈ S. Then in fact
frobenii (topologically) generate GK,S :

Theorem 1 (Chebotarev density theorem). Conjugacy classes of Frobv for v 6∈ S
are dense in GK,S.



GALOIS REPRESENTATIONS AND MODULAR FORMS 3

Lecture 2 (Medvedovsky & Ghitza): Lecture 2

2. Galois Representations

Definition 2. Let K be a field, F a topological field (think F/Qp,R,C). Then a
Galois representation (ρ, V ) (i.e. a GK-rep) is a continuous group homomorphism

ρ : GK → GLF (V ).

where V is a finite dimensional F -vector space. A morphism of GK-reps from V to
W is a GK-equivariant F -linear map φ such that for all g ∈ GK , the diagram

V W

V W

φ

ρV (g) ρW

φ

commutes.

We then have some properties

Definition 3. For a given GK-rep (ρ, V ):
• a subrepresentation W is a GK-stable subspace W ⊂ V . W is proper if it

is nonzero and not equal to V ;
• V is irreducible if it has no proper subrepresentations;
• V is indecomposable if it is not a sum of proper subrepresentations;
• V is semisimple if it is a direct sum of irreducible subrepresentations.

Remark 4. Unlike for finite groups, there are, in general, indecomposable represen-
tations which are not irreducible.

Now assume K is a number field with (ρ, V ) a GK-rep.

Definition 5. We say
• (ρ, V ) is unramified at v if Iv ⊆ ker(ρ);
• If (ρ, V ) is unramified at every v 6∈ S then (ρ, V ) factors through GK,S .

Note that we have the following corollary of the Brauer-Nesbitt theorem.

Theorem 6. If char(F ), then v 7→ trρ(Frobv) for v 6∈ S determines a semisimple
representation of GK,S.

2.1. Artin Representations. Consider the case F = C, then we call such a rep-
resentation an Artin representation. In this case we have the following:

Theorem 7. Every Artin representation has finite image. Moreover, as a result,
these representations are semisimple and are unramified almost everywhere (as they
must factor through a finite extension).

2.2. p-adic representations. Consider the case F = Qp, then we have the first
example given by the p-adic cyclotomic character. Assume that K is any field, then
we have an injection

Gal(K(µn)/K) ↪→ Z/nZ×,
given by mapping σ 7→ a where σ(ζn) = ζan. Consider the case that n = pk, then
taking limits on k we obtain a continuous map

ωp : GK → Gal(K(µp∞)/K) ↪→ Z×p ⊆ Q×p .
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We call this the p-adic cyclotomic character. If K = Q then note that this character
ramifies only at p. In particular, for ` 6= p prime we have

ωp(Frob`) = `

since Frob`(x) ≡ x` mod ` and so Frob`(ζkp ) = ζ`pk .

3. Elliptic Curves

Let E/K be a smooth projective curve of genus 1 with a K-rational point. Then
we (as long as K does not have characteristic 2, 3) can reduce to

E : y2 = x3 +Ax+B,

for A,B ∈ K such that 4A3 + 27B2 6= 0. Then the K-rational points on these
curves form an abelian group, and recall that we have maps for each m ∈ Z

[m] : E → E,

given by multiplication by m, and we denote by E[m] = ker([m]). If m is coprime
to char(K) we have E[m] ∼= (Z/mZ)2. Now let ` be a prime, then we have the
`-adic Tate module

T`(E) := lim←−
k

E[`k] ∼= Z2
`

where the second isomorphism is as abelian groups. Note that the action of GK
on each E[`k] commutes with the transition maps in the limit and so GK acts
continuously on T`(E). Moreover we then have an associate `-adic representation
on the vector space

V`(E) := T`(E)⊗Z` Q`.
That we denote by

ρE,` : GK → AutZ`(T`(E)) ⊆ AutQ`(V`(E)) ∼= GL2(Q`).
One useful property here is that in fact V` is functorial, and so induces a map

for each pair E1, E2 of elliptic curves

Hom(E1, E2)⊗Z Z` → HomZ`(T`(E1), T`(E2))

which is an injection.

Lecture 3 (Ghitza)
We recall the representation ρE,` associated to an elliptic curve and prime ` from
last time. Recall that for an isogeny φ : E1 → E2 is always surjective with finite
kernel, and that there is a dual isogeny φ∨ : E2 → E1, and that

φ∨ ◦ φ = [deg(φ)]E1
φ ◦ φ∨ = [deg(φ)]E2

Example 8. For m ∈ Z we have the isogeny [m] : E → E, the dual is [m]∨ = [m],
and so the degree is m2.

Example 9. If E/Fp then we have a Frobenius isogeny

F : E → E; (x, y) 7→ (xp, yp)

We have maps

End(E)⊗ Z` ↪→ EndZ`(T`(E))

φ 7→ φ`

Proposition 10. We always have:
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(1) det(φ`) = deg(φ);
(2) tr(φ`) = 1 + det(φ`)− det(I − φ`)

3.1. Elliptic Curves over Finite Fields. Consider the case K = Fp for some
p 6= ` and E/K an elliptic curve. Then GK is topologically generated by Frobenius
Frob : x 7→ xp. We have

F` := ρE,`(Frob) ∈ AutZ`(T`(E)),

where F is the Frobenius as in Example 9.

Theorem 11. If E/Fp, p 6= `, then deg(F ) = p, deg(I − F ) = #E(Fp). So that
(a) det ρE,`(Frob) = p;
(b) trρE,`(Frob) = p+ 1−#E(Fp).

Remark 12. Note that there is no dependence on ` (other than not being p).

3.2. Elliptic Curves over Local Fields. Consider the case K = Qp, again p 6= `,
and E/K an elliptic curve. We assume that E is presented to us with a minimal
Weierstrass equation with Zp-coefficients, with discriminant ∆min.

3.2.1. Good Reduction.

Definition 13. Say that E/Qp has good reduction if vp(∆min) = 0.

We can reduce our model mod p to give a curve ẼFp.

Theorem 14 (Néron–Ogg–Shafarevich). If p 6= `, then E/Qp has good reduction
if and only if ρE,` is unramified.

Moreover, if E has good reduction then the diagram below commutes

1 IQp GQp GFp 1

Aut(V`(E)) Aut(V`(Ẽ)).

ρE,` ρẼ,`

Corollary 15. If ` 6= p and E/Qp has good reduction, then

det(ρE,`(Frob)) = p,

tr(ρE,`(Frob)) = p+ 1−#Ẽ(Fp),

where Frob is a choice of Frobenius element. Note that by Néron–Ogg–Shafarevich
we know that the representation ρE,` is unramified and so the choice is unimportant.

3.2.2. Bad Reduction. Ok so what about when we don’t have good reduction? Well
we have...bad reduction. There are several possibilities

• Multiplicative Reduction: i.e. Ẽ/Fp has a node. In this case the reduction
can be:
– split if the slopes of the tangent are defined over Fp
– nonsplit if the slopes of the tangent are not defined over Fp

• additive: Ẽ/Fp has a cusp.

Remark 16. In the (split) multiplicative case, there is Tate’s uniformization which
identifies E(Qp) with Q×p /qZ for some parameter q ∈ pZp.
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3.3. Elliptic Curves over Number Fields. Consider the case K = Q, say E/Q
has been presented to us with a minimal Weierstrass equation with coefficients in
Z and write ∆min for the discriminant of this model.

Definition 17. E/Q has good reduction at p if p - ∆min. In this case the reduction
mod p of the model gives an elliptic curve Ẽ/Fp.

Theorem 18. If p 6= `, then E/Q has good reduction at p if and only if ρE,` is
unramified at p. In this case:

(1) det ρE,`(Frobp) = p,
(2) trρE,`(Frobp) = p+ 1−#Ẽ(Fp) =: ap(E),

where Frobp is a choice of Frobenius at p.

Remark 19. Again, since the representation is unramified, the choice of Frobenius
is unimportant.

Remark 20. det(ρE,`) ∼= ω`, the `-adic cyclotomic character.

Theorem 21 (Serre). (If EndQ(E) ∼= Z) then ρE,` is irreducible for all `.

Whilst the bracket is a trivial statement, one cannot realise additional CM en-
domorphisms over Q, if we were to replace Q with a number field then this could
potentially be nontrivial.

Remark 22. Ideally we’d study the GK module E(K), but this isn’t even linear.
We linearise by taking the Tate module. In general, inspired by geometry, one could
take modules arising in cohomology instead. In fact, it turns out that

V`(E) ∼= H1
ét(EK ,Q`)

∨.

Lecture 4 (Ghitza): Modular Forms

4. Modular Forms

It’s about time we talked about modular forms.

Theorem 23 (Eichler–Shimura–Deligne). Let k ≥ 2, N ≥ 1, ε a Dirichlet char-
acter mod N . Let f ∈ Sk(N, ε) be a newform with Hecke eigenvalues Tp(f) = apf
for p - N . Take the number field K = Q({ap, ε(p) : p - N}), and let λ be a finite
place of K with residue characteristic ` and completion Kλ.

Then there exists an irreducible Galois representation

ρf,λ : GQ → GL2(Kλ),

that is unramified outside of N` such that for all p - N`
det ρf,λ(Frobp) = ε(p)pk−1,

trρf,λ(Frobp) = ap.

Remark 24. Notice that det ρf,λ(Frobp) = εωk−1` for ω` the `-adic cyclotomic char-
acter.

Remark 25. Linking to last time, roughly: there is a correspondence

E/Q→ f ∈ S2(N, 1)

to those with rational eigenvalues and such that ρE,` = ρf,` and ap(E) = ap(f) for
all p.
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4.1. Classical Modular Forms.

Definition 26. A modular form f ∈Mk(N, ε) is a map f : h→ C, where h is the
upper half plane in C, which is holomorphic, satisfies

f

((
a b
c d

)
· z
)

= ε(d)(cz + d)kf(z),

where
(
a b
c d

)
· z = az+b

cz+d and
(
a b
c d

)
∈ Γ0(N) ⊆ SL2(Z) (the ones with c ≡ 0

mod N), and is ‘holomorphic at the cusps’.

Remark 27 (Holomorphy at cusps). Indeed, a modular form f has a q-expansion
f(z) =

∑
n∈Z anq

n where q = q(z) = e2πiz, and f is holomorphic at the cusp i∞
if an = 0 for all n < 0. For the other cusps: P1(Q)/Γ0(N) classifies the cusps,
and f has a Fourier expansion at each cusp (much like the q-expansion is at i∞),
holomorphy at the cusp means that an = 0 for n < 0 in that Fourier expansion.

The q-expansion is the fourier expansion around a cusp, the picture to have in
ones head when looking at the fundamental domain is below.

Definition 28. For a modular form f ∈ Mk(N, ε), if a0 = 0 at all cusps (i.e.
f vanishes at the cusps) then we call f a cusp form and denote the set of such
Sk(N, ε).

Example 29. • Eisenstein series Gk ∈Mk(1) for k ≥ 4.
• Theta series, which arise from certain quadratic forms.
• η(z) = q1/24

∏
n≥1(1− qn), which has ‘weight q/2’.

• ∆(z) =
∑
n≥1 τ(n)qn ∈ S12(1)

4.2. Geometry. Recall the subgroup

Γ0(N) ⊇ Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N, a ≡ d ≡ 1 mod N

}
One can prove that there is a decomposition

Mk(Γ1(N)) =
⊕

εdir. char.

Mk(N, ε).

Now consider f of weight k = 2, for

f

(
az + b

cz + d

)
= (cz + d)2f(z)

for
(
a b
c d

)
∈ Γ1(N). Note that f is not a function on h/Γ1(N) =: Y1(N)C. The

transformation property shows that f(z)dz is infact a differential on this geometric
space: a global section of Ω1

Y1(N)C
.

Observe now that

Y1(N)C =
{
isom. classes of (E,P ), E/Celliptic curve,

P∈E[N ]

}
,
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so why not define a functor

Y1(N) : Sch→ Sets

by
Y1(N)(S) =

{
isom. classes of (E,P ), E/S elliptic curve,

P∈E[N ]

}
.

In fact, for N ≥ 4 we get that Y1(N) is smooth and quasiprojective over Z[ 1
N ].

There is then a result of Kodaira–Spencer:

Ω1
Y1(N)

∼= ω⊗2,

giving
M2(Γ1(N),C) = H0(X1(N)C, ω

⊗2)

Remark 30. The condition N > 4 is because if N is smaller then there are extra
automorphisms and then we will not obtain a scheme. If you’re happy with algebraic
stacks then one has to work in that realm to make geometric sense of this.

4.3. Hecke Operators. For p - N we could look at the group

Γ1(N) ∩ Γ0(p) ⊂ SL2(Z).

In this case it classifies triples (E,C, P ) where C ≤ E[p] is a cyclic subgroup and
P ∈ E[N ]. Then we have

h/Γ1(N) ∩ Γ0(p) = Y (Γ1(N) ∩ Γ0(p)),

and there is the so-called Hecke correspondence

Y (Γ1(N) ∩ Γ0(p))

Y1(N) Y1(N)
β

α

where α(E,C, P ) is equivalent to (E/C, π(P )) (φ : E → E/C induced morphism
to quotient), and β(E,C, P ) is equivalent to (E,P ).

Have Hecke operators

Tp : Mk(Γ1(N))→Mk(Γ1(N))

Tp · f(z) =
∑
n≥0

anpq
n + ε(p)pk−1

∑
n≥0

anq
np

Lecture 5 (Ghitza & Medvedovsky)

5. Eichler–Shimura–Deligne (the speed dating version)

Recall the Eichler–Shimura–Deligne theorem, as in Theorem 23, which we restate
below.

Theorem 31 (Eichler–Shimura–Deligne). Let k ≥ 2, N ≥ 1, ε a Dirichlet char-
acter mod N . Let f ∈ Sk(N, ε) be a newform with Hecke eigenvalues Tp(f) = apf
for p - N . Take the number field K = Q({ap, ε(p) : p - N}), and let λ be a finite
place of K with residue characteristic ` and completion Kλ.

Then there exists an irreducible Galois representation

ρf,λ : GQ → GL2(Kλ)



GALOIS REPRESENTATIONS AND MODULAR FORMS 9

that is unramified outside of N` such that for all p - N`

det ρf,λ(Frobp) = ε(p)pk−1,

trρf,λ(Frobp) = ap.

How do we build this Galois representation? Look at J1(N) := Jac(X1(N)), let
T be the Z-subalgebra of End(S2(Γ1(N))) generated by Tp for p - N .

S2(Γ1(N)) = H0(X1(N)C,Ω
1
X1(N)C

)

which is the cotangent space at 0 in J1(N)C. Thinking a little, T can be reinter-
preted as EndZ(J1(N)C). Our eigenform f defines

φ : T→ K

Tp 7→ ap

and kerφ is an ideal, so
ker(φ) · J1(N)

is T-stable and we can form the abelian variety

Af = J1(N)/ kerφ · J1(N),

upon which Tp acts as multiplication by ap. Then

End(Af )⊗Q = K

and dimAf = [K : Q]. The obvious thing now would be to consider

GQ → Aut(V`Af ),

but this is a 2[K : Q] dimensional representation, not 2... However we note that
V`(Af ) is in fact a rank 2 K ⊗Q`-module and so

GQ → GL2(K ⊗Q`).

But then K ⊗ Q` =
∏
λ|`Kλ isn’t a field... ok so pick your favourite factor to,

finally, obtain:

GQ GL2(K ⊗Q`)

GL2(Kλ).

ρf,λ

Now what about these determinant and trace properties?
Fix p - N , let α : µn → E[n] and look at frobenius

F : X1(N)Fp → X1(N)Fp ,

(E/R,α) 7→ (E(p)/R, F ◦ α).

The dual of Frobenius is then a map on the divisors

F∨ : J1(N)Fp → J1(N)Fp

(E,α) 7→
∑

F :E0→E
(E0, F

∨ ◦ α).

Eichler–Shimura prove that Tp = F+F∨ as isogenies on J1(N)Fp . We then consider
the inclusion

End(Ãf ) ↪→ End(V`Ãf )
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which sends F = Tp 7→
(
ap 0
0 ap

)
Note that F ◦ F∨ is multiplication by p. We

stare for a moment and note that the trace and determinant properties are then
immediate.

6. Galois side

Say we start with a Galois representation

ρ : GQ → GL2(Qp) = GL(V )

where ρ = ρf,p where p is a degree 1 prime of Kf which is the Hecke eigenvalue
field. Then V ∼= Q2

p always has an invariant lattice Z2
p, so ρ is the base-change of

an integral representation

GQ GL(Λ)

GL2(Fp)

ρΛ

ρΛ

Some points:
• Λ is not unique in general, so ρλ, ρλ is not determined by p alone
• However, the semisimplification ρλss is determined by p!

6.1. Modular Forms Side. Consider Γ0(N), p - N , look at Mk(N,Qp) which
is finite dimensional, say dk ∼ k

12 [SL2(Z) : Γ0(N)] is the dimension of this space.
The finitely many normalised eigenforms f1, . . . , fdk all have Zp-coefficients, so we
reduce mod p and in the end we only get finitely many f , even as k →∞!

Example 32. p = 2, N = 1 then any cuspidal eigenform mod 2 is congruent to ∆
modulo 2.

You can prove this finitude by working mod p. How? Well we define, following
Serre–Swinnerton-Dyer,

Mk(N,Fp) := im (Mk(N,Z)→ Fp[[q]]) .

Remark 33. Can also define this geometrically as in the previous section.

We have an action of Hecke operators on the left hand side

Theorem 34 (Deligne–Serre Lifting Lemma). Any system of mod p Hecke eigen-
values lifts.

Consider

Mk−p+1(N,Fp) ↪→Mk(N,Fp)→Wk(N)→ 1f 7→ fEp−1

and Ep−1 ∼ Gp−1.

Theorem 35 (Jochnowitz–Serre–Tate–Robert).

Wk(N) ∼= Wk+p2−1(N)

as Hecke modules for k ≥ p1, and the isomorphism is given explicitly by

f 7→ f · Ep−1p+1
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