
MODELS OF CURVES READING GROUP

ROSS PATERSON

Disclaimer. These notes are notes taken live during sessions of a study group
held at the University of Bristol during February–April 2024. The speakers
name is listed at the start of each lecture. All errors are the fault of the
transcriber, and the notes should therefore be taken with a pinch of salt.

Lecture 1 (Tim): Arithmetic Surfaces
Today we will say a few words about arithmetic surfaces. To begin we take notation:

Notation Meaning Examples
R: a discrete valuation ring (DVR) Zp,Fp[[T ]]
K: field of fractions of R Qp

k: residue field of R Fp

π: choice of uniformizer p.
Let C /Spec(R) be any scheme, then we have so-called special and generic fibres

Definition 1. Let C/K be a non-singular projective geometrically irreducible
curve. Then a model of C is a flat proper scheme C /Spec(R) of finite type with
generic fibre Cη

∼= C.

How do we actually obtain such a thing?

Example 2. Consider the variety cut out by C : f = 0 ⊆ P2
K . Scale f to get the

coefficients to all be in R and not all divisible by π. Then consider the equation
now over R to have

C : f = 0 ⊆ P2
R.

This is a model since the generic fibre is simply C. Moreover the special fibre is the
scheme Cs : f = 0 ⊆ P2

k given by reducing our equation mod π. Note that flatness
is coming from the condition that not all coefficients are divisible by π since if this
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condition fails then the special fibre is going to be all of P2
k and so too large in

dimension.

Remark 3 (flat limits). Generally, consider a morphism of schemes X → Y where X
is locally Noetherian and Y is Noetherian and 1-dimensional. Take a closed regular
point y ∈ Y (e.g. P2

R → Spec(R) ∋ s). Then a flat scheme Z ⊆ X ×Y (Y \ {y}) (i.e.
Z ⊆ X\Xy where the latter is the gibre over y) (e.g. C ⊆ P2

K) has a unique flat
extension Z̃/Y : namely the closure of Z in X.

Example 4. When C/K : y2 = x3 + ax + b for a, b ∈ R is an elliptic curve, then
C : y2 = x3 + ax+ b is called a Weierstrass model of C.

The special fibre Cs of a model C is a connected (Zariski connectedness), proper,
1-dimensional (flatness) scheme over k.

Example 5. C : yx2(y − x)3 = π ⊆ P2
R (really z6π but let’s not quibble over

vagueries about affine models!). Then the special fibre is a union of 3 lines: y = 0,
x = 0 and y = x, with multplicities.

Example 6. Take K = Qp with p ̸= 2. Consider the
(projective model of the) curve

C/K : xy(x− y) = 2p.

If we look up the classification in Silverman then we see
that the Kodaira type of the special fibre is IV. However
the transformation

X =
2p

y
, Y = p(1− (2x/y)),

renders this curve isomorphic to C ′/K : Y 2 = X3 + p2.
Drawing this out we obtain a different special fibre:
This is not regular.

Definition 7. We define certain properties of models.
• C is a regular model if C is a regular scheme.
• We say that C is regular with normal crossings (rnc) if C is regular and

the reduced curve C red
s is a normal crossings divisor meaning that the only

singularities are ordinary double points.
• We say that C is snc (strict normal crossings) if it is rnc and has no com-

ponents which self intersect.

There is a way to associate a graph to each special fibre by defining a vertex for
every component and an edge between vertices if they intersect.

Warning: regularity is not a property of the special fibre, but of the model
itself!

Facts 8. We now remark on some important facts.
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(a) Regular model (b) rnc model (c) snc model

The three properties in Definition 7

• It is enough to check regularity at the singular points of the special fibre
(including all components of multi[plicity > 1).

• Say f(x, y) = 0 ⊆ A2
R is singular at m := (x, y, π) (which corresponds to

the point (x, y) = (0, 0) on the special fibre) if and only if dimm/m2 = 3.
This is then equivalent to f = a + bx + cy + . . . with a ≡ 0 mod π2 and
b, c ≡ 0 mod π

Example 9. Consider K = Qp for p ̸= 2, and the Weierstrass model

C : y2 = x3 + x2 + pn.

By the second fact above:

• if n = 1 then C is regular, rnc but not snc. In the
Kodaira classification this is called type I1.

• if n > 1 then C is not regular. In the Kodaira
classification this is called type In.

Theorem 10 (Lipman). Repeatedly normalising (any model C ) and blowing up
singular points terminates in a regular model C ′ → C . Blowing up further if
necessary also gives rnc and snc models.

Example 11. K = Qp, p ̸= 2. Consider C : y2 = x3 +
2x2+p2. This is not regular at the point (x, y, p). Blowing
up at this point, we obtain C ′ with charts U∞, Ux, Uy, Up

given by

Uy : p = uy, x = vy

which leads us to the affine model 1 = v3y+2v2+u2, p =
uy ⊆ A3

Zp,u,v,y
. The special fibre has p = uy = 0, (see

below). This is now a regular model.

Remark 12. Some remarks.
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• Regular models do not stay regular in ramified field extensions, e.g. let
π = n

√
p and K = Qp(π) and the model

y2 = x3 + x2 + p,

then this becomes
y2 = x3 + x2 + πn.

• Rπ :=completion of R. Then C is regular if and only if the base change to
Rπ is regular. Thus we may as well assume that R is complete, which is
nice as over the completion we will often have things like Hensel’s lemma
at our disposal.

• Can glue regular models to get them over Dedekind domains (e.g. Z).
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Lecture 2 (Himanshu Shukla): Properness and
implications of regularity

Let K be the field of fractions of a DVR R with maximal ideal m and residue field
k := R/m. Assume that K is complete with respect to the valuation v of R.

1. Motivation

Let K := Qp, R := Zp, m := (p), k := Fp, and E/K be an elliptic curve given
by the Weierstrass model y2 = f(x), where f is a monic cubic polynomial over R.
Let E/k be the curve obtained by reducing the coefficients of f mod p given by
y2 = f . For a point P ∈ E(K), let P ∈ E(k) be the point obtained by reduction
of coordinates mod p. In the terminology of Chapter VII of Silverman’s AEC,
let Ens(k) be the set of non-singular points on E(k). Then one has the following
proposition.

Proposition 13. • Ens(k) is a group and O ∈ Ens(k).
• Let E0(K) := {P ∈ E(K) | P ∈ Ens(k)}. Then E0(K) is a group and the

reduction map E(K) → Ens(k) restricted to E0(K) is a surjective group
homomorphism.

The surjectivity is due to the Hensel’s lemma applied on the polynomial y2 −
f(x̃0), where (x0, y0) is a point on Ens(k) and x̃0 ∈ R is such that x̃0 ≡ x0 mod p.
Define E1(K) to be the kernel of the reduction homomorphism, i.e.

E1(K) := ker
(
E0(K)→ Ens(k)

)
,

which in the case of Weierstrass model is the set of all points (x, y) ∈ E(K) such
that v(x), v(y) < 0, and O. We have the following commutative diagram of pointed
sets

0 E1(K) E0(K) Ens(k) 0

0 E1(K) E(K) E(k) 0

,

where the top row is also an exact sequence of groups.
We can get a handle on E0(K) by using the information on E1(K) and Ens(k).

We would like to understand E(K)/E0(K) in order to understand E(K). Now if
E(k) were to be a group with the reduction map being a homomorphism on E(K),
then by snake lemma one gets E(K)/E0(K) ↪→ E(k)/Ens(k) and one could have
understood E(K)/E0(K) by studying points mod p. But fortunately/unfortunately
E(k) is not necessarily a group except if E has good reduction at p.

2. Proper morphisms

We define morphism of schemes to be proper using the valuative criterion of
properness due to Chavelley.

Definition 14. Let f : X → S be a finite type morphism of Noetherian schemes
(i.e. X and S can be covered by finitely many Spec(Ai), with Ai being Noetherian).
Then f is said to be proper ⇐⇒ for every DVR R with field of fractions K, given
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a morphism s : Spec(R) → S and a morphism x : Spec(K) → X such that the
outer square in the following diagram commutes

(1)
Spec(K) X

Spec(R) S

x

ι f

s

x ,

where ι is the morphism induced by the inclusion R→ K. Then there is a unique
lift of x to a morphism x : Spec(R)→ X such that everything commutes.

Note that the morphism s makes Spec(R) an S–scheme and similarly for Spec(K).
If T is another S–scheme then the set of S–morphisms T → S ←→ the set of T -
rational points of X. Keeping this in mind, the above diagram says that f is proper
⇐⇒ if x gives a K rational point on X such that f(x) is gives an R–rational point
on S, then there is exactly one way of “clearing the denominators” to obtain a
R–rational point on X.

Example 15.
• Projective space Pn

S over S is proper. Hence, for S = Spec(R) we have
Pn
R := Pn

Z ×Z S over S := Spec(R), and the above definition says that
Pn
R(K)←→ Pn

R(R)←→ Pn
K(K), where note that Pn

K is the generic fibre of
Pn
R, which is what one expects from the definition of a projective space.

• If C/R is an arithmetic surface, then every fibre of C can be embedded
inside projective space, hence we have C is proper and C(R) ←→ C(K),
where C is the generic fibre.

In the case when C/R is an arithmetic surface with generic fibre C and special
fibre C, then for every point P ∈ C(K), one can find a representation of P by
clearing the denominators as (πα1a1 : . . . : παnan), where π is a uniformizer of
R such that ai are units in R and αi ≥ 0 with at least one ai = 0. Hence, we
have the reduction mod π map C(K) → C(k). In the sense of the diagram (1)
it means: given x : Spec(K) → C, one has x : Spec(R) → C. The k–rational point
on C(k) associated to x corresponds to the composition of morphisms Spec(k) µ→
Spec(R)

x→ C, where µ is the morphism taking the unique point of Spec(k) to
m. Since the composition f ◦ x ◦ µ has to commute s ◦ µ, this gives a morphism
Spec(k)→ C.

Let Cns be the non-singular part of the special fibre, C0 be the largest non-
singular subscheme of C and C0(K) be the subset of C(K) that reduce to Cns. As
before, Hensel’s lemma implies that the morphism C0(K) → Cns(k) is surjective.
We also have C0(R) ⊆ C(R) ←→ C(K) ⊇ C0(K). Identifying C(R) with C(K) we
have C0(R) ⊆ C0(K) ⊆ C(K) = C(R). In the next section we would like to see the
interaction of some of these sets if C was regular.

3. Consequences of regular models

We begin with some examples.

Example 16. Recall the regular model for the elliptic curve E/Qp given by the
Weierstrass model E/Zp : y2 = x3 + x2 + p (Example 9 from Tim’s lecture). The
special fibre C has a singular point (0, 0). If P := (x, y) ∈ E(Qp) is such that
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P = (0, 0), then p|x and p|y. Hence 2v(y) = 1 but v(y) ≥ 1. Thus we have
E(K)←→ E(Zp) = E0(R) = E0(K). Hence [E(K) : E0(K)] = 1.

Example 17. Recall that the elliptic curve E/Qp given by the Weierstrass model
E/Zp : y2 = x3+2x2+p2 is not regular (Example 11 from Tim’s lecture). However
there is a regular model given by

E ′/Zp :

{
1 = yv3 + 2v2 + u2,

p = uy
,

with isomorphism between generic fibres given by x 7→ uy, y 7→ y, p = uy. Note
that the above equations are for the intersection of the affine model of E ′ with the
chart Uy as before. If we work with E , then we see that if x ∈ Zp is such that
v(x) > 1, then up to even powers of p, we have f(x) = 1+O(p2) which is a square.
Therefore, for every x such that v(x) > 1, one obtains points P ∈ E(Zp) such that
P = (0, 0). Similarly one can show that for each r ≥ 1, and x such that v(x) = −2r,
one can obtain points reducing to O. This implies that there are “many" points
reducing to both Ens(Fp) and (0, 0). Clearly, we have E0(Zp) ⊊ E(Zp).

We now consider the regular model E ′, we get that the two non-singular points
(0,±1/

√
2, 0) ∈ Ens(Fp) do not lift to C(Zp), because otherwise p|u and p|y and

p = p2a, where (u, v, y) ∈ E′(Zp) is a lift of (0,±1/
√
2, 0) and a ∈ Z×p . Other than

the points (0,±1/
√
2, 0) every other point on E′(Fp) is smooth and by Hensel’s

lemma lifts to a point of E ′(Zp). Therefore, E ′(Zp) = E ′0(Zp) = E′(Qp) = E′0(Qp).
Any point in E ′(Zp), with y ≡ 0 mod p and u ̸= 0 mod p implies that 1 =

2v2 + u2 mod p and hence x = vy ≡ 0 mod p, i.e. P corresponds to a point on
E(Zp) mapping to (0, 0) on E. Furthermore, the set of points on E′(Fp) with u = 0

and y ̸= 0 corresponds to the set of points on Ens(Fp). Now since E′ ≃ E, we have
E′(Qp) ≃ E(Qp), but E0(Qp) corresponds to only one of the two components of
E′ns(Fp). Hence [E(Qp) : E

0(Qp)] = 2.

The above two examples suggest that in order to study the quotient E(K)/E0(K),
one can study study some regular model E ′ of E where E ′(R) = E ′0(R), E(K) ≃
E′(K) and study the components of the special fibre E′ which correspond to E0(K).
However, this model should be “minimal” (provide ref. (Gergely’s talk)) in some
way so that we do not add more components than we need. Recall that, one can
always create regular models from the non-regular models by blowing up (Theorem
10 from Tim’s lecture). The following theorem allows us to do the same.

Theorem 18. (provide ref. (Silverman 2, Chapter 4)) Let C/R be proper and be
a regular model of C/K and P ∈ C(R). Then P ∈ Cns(k), and hence C0(R) =
C(R) = C(K).

Question 19. Let C/R be proper such that C0(R) = C(R). Then is C a regular
model?
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Answer (Sam Frengley). No. Consider a regular model C/R of C/K which looks
as follows in the special fibre

,

where the blue components are swapped by the Galois. C(R) reduces to the set of
non-singular k–rational points on the green component. Blowing down the blue-
components gives us a non-regular model C′/R of C/K such that special fibre C ′

looks like

The singular point in C ′ does not lift to C′(R), since it is coming from blowing
down the blue components, hence C′(R) = C′0(R) but C is not-regular.

Lecture 3 (Sam): Intersection Theory
References: Silverman (Advanced Topics in the Arithmetic of Elliptic Curves)
Chapters III-IV.

Algebraic Surfaces

Throughout, K is a field.

Definition 20. An algebraic surface over K is a smooth projective geometrically
integral variety S/K of dimension 2. Moreover,

• A Prime divisor on S is an integral D ⊆ S of codimension 1;
• Div(S) := free abelian group on prime divisors.

Fix an algebraic surface S/K.

Theorem 21. There is a unique pairing

Div(S)×Div(S)→ Z
(C,D) 7→ C ·D.

called the intersection pairing and satisfying the following.
(i) If C,D are non-singular and meet transversely (∀P ∈ C ∩D, the maximal

ideal of OS,P is ⟨f, g⟩ for f, g local equations for C,D), then C ·D = #C∩D;
(ii) It is symmetric: C ·D = D · C;
(iii) It is additive: (C1 + C2) ·D = C1 ·D + C2 ·D;
(iv) It is invariant under linear equivalence: if C1 ∼ C2 then C1 · D = C2 · D

(recall: C1 ∼ C2 if and only if C1 − C2 = Div(f) for some function f ∈
K(S)).

Remark 22. Really, this is a pairing for Cl(S) ∼= CaCl(S) ∼= Pic(S).
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Example 23. If we look at S := P2, then Pic(S) = ⟨O(1)⟩ ∼= Z is generated by
the twisted sheaf O(1). Identifying O(1) with 1 ∈ Z then the intersection pairing is
given by multiplication in Z. For curves C,D ⊆ S of degrees c, d we get C ·D = cd.

Question 24. How do we compute this in general?

Proposition 25. If C,D ∈ Div(S) are effective divisors with no common compo-
nent then

C ·D =
∑

P∈C∩D
(C ·D)P ,

where (C ·D)P = dimK OS,p/ ⟨f, g⟩ where ⟨f, g⟩ are local equations for C,D.

Definition 26. We say that S is fibred over a(n irreducible) curve C/K if there is
a surjective morphism

π : S → C.

For D ⊆ S, the image π(D) = {P} is a (closed) point (call this vertical) or all of C
(call this horizontal).

Proposition 27. Consider a fibration π : S → C a vertical divisor
D. Then

(a) D2 ≤ 0;
(b) D2 = 0 if and only if ∃α ∈ Q× and δ ∈ Div(C) such that

D = απ∗(δ).

Let’s now look at an explicit example.

Example 28. Consider S = P1 × P2, so that Pic(S) =
⟨O(1, 0),O(0, 1)⟩ ∼= Z2. Then the intersection product is O(a, b) ·
O(c, d) = ad+ bc, O(a, b)2 = 2ab.

Arithmetic Surfaces

• Let R be a DVR, with maximal ideal m and let K = Frac(R) be the fraction
field and k = R/m be the residue field.

• Let C /R be an arithmetic surface: so we have a morphism C → Spec(R)
which is flat, proper etc., and of relative dimension 1, and denote by C = Cη

the generic fibre.
• Assume that C is normal
• Assume that Γ ⊂ C is a prime divisor, again we have horizontal and vertical

divisor. In this setting we note that prime horizontal divisors are given by
C(K)/Gal(K/K) (when C is regular), and prime vertical are components
of the special fibre Cs.

• Divs(C ) is the free abelian group on the prime vertical divisors.

Definition 29. Let Γ1 ̸= Γ2 ∈ Div(C ), and x ∈ Cs be a closed point.
• A uniformiser for Γi at a point x is an element fi ∈ OC ,x such that

ordΓi
(fi) = 1; ordΓ′(fi) = 0

for every prime divisor Γ′ ̸= Γ with x ∈ Γ′.
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Figure 2. An arithmetic surface

• The local intersection multiplicity is

(Γ1 · Γ2)x = dimkOC ,x/ ⟨f1, f2⟩

Theorem 30. Let C /R be regular and proper. Then there is a unique bilinear
pairing

Div(C )×Divs(C )→ Z
(D,F ) 7→ D · F

such that
(1) If D ∈ Div(C ), F ∈ Divs(C ) distinct and irreducible then

D · F =
∑

x∈D∩F
(D · F )x.

(2) For D1, D2 ∈ Div(C ), if D1 ∼ D2 and F ∈ Divs(C ) then D1 · F = D2 · F .
(3) F1, F2 ∈ Divs(C ) then F1 · F2 = F2 · F1

Example 31. Let R = Zp, C : y2 = x3 + x2 + p2, and D : x = 0 (closure of the
point (0, p) ∈ C(Qp)) and F = Cp be the special fibre. Then (were this regular,
which it is not), we get

(D·F ) = (D·F )
(0,0)

= dimFp

(
Zp[x, y]/(y

2 − x3 − x2 − p2, x, p)
)
= dimFp

Fp[y]/y
2 = 2.

Proposition 32. If C /R is regular then
(a) Cs is connected;
(b) For F ∈ Divs(C ) with F 2 ≤ 0, the following are equivalent

(i) F 2 = 0;
(ii) F · F ′ = 0 for all F ′ ∈ Divs(C );
(iii) F = αCs for some α ∈ Q.

Adjunction Formula

Definition 33. The arithmetic genus of a proper irreducible curve F/k is Pa(F ) =
dimH1(F,OF ) (this can be extended to connected support).

Remark 34. We have:
• Pa(F ) = g(F ) (geometric genus) if F is non-singular;
• for a nodal curve, Pa(F ) = g(F ) + #nodes;
• Pa is constant in flat families;

Proposition 35. (1) For a canonical divisor KC on C , we have

2Pa(F )− 2 = F · (F +KC ) ∀F ∈ Divs(C ).

(2) If C is regular then we have Pa(Cs) = Pa(C) = g(C).
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(3) For F ∈ Divs(C ) irreducible, we have Pa(F ) ≥ 0, with equality if and only
if F ∼= P1

k

Example 36. Consider the following types.

In cases 1) and 2) (known as In and IV reduction) we can deduce that the genus
of our generic fibre must have been g(C) = 1. In the final case, 3), we can determine
that the generic fibre has genus g(C) = 2.

Lecture 4 (Gergely): Minimal Models
Today we will discuss the existence of minimal models. Tim already mentioned this
existence, but we will now give some details. We maintain the notation (R,K, k
etc.) from last time.

Normalisation

Let X be a scheme. If X is normal (plus some mild con-
ditions) then the singular locus of X has codimension at
least 2. For an affine integral scheme Spec(A), we have the
associated integral closure (in its field of fractions) A′ ⊇ A.
We can use these to construct the normalisation X ′ of X,
essentially by integrally closing an affine cover.

Lipman’s existence theorem. Let C be a model of a curve C/K over R. Then
there exists C (1),C (2), . . . models of C/K

C ← C (1)← C (2)← . . .

where C (i+ 1) is the normalisation of the blow-up of a singular point P ∈ C (i).

Definition 37. A modification of a model C is a birational morphism which is an
isomorphism away from some singular point P ∈ C . It is a blow-up if the preimage
f−1(P ) has arithmetic genus 0.

Theorem 38 (Lipman’s existence theorem). After finitely many steps, we arrive
at a regular scheme. I.e., there exists n such that C (n) is regular.

We will not discuss the proof in depth, and instead discuss minimality.

Definition 39. A relatively minimal regular model C of C/K is one which satisfies:
(1) it is regular
(2) if f : C → C ′ is a birational and proper morphism then f must be an

isomorphism.
We say there is a minimal regular model if all relatively minimal regular models
are isomorphic.

Lemma 40. C is minimal if and only if every birational map Y → C is a mor-
phism.
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Let C be regular. Then we try to “blow-down” C until we get some minimal
regular model.

Note that a blow-down is a morphim which is an isomorphism outside of a fixed
component (which is the one we are blowing down)!

Definition 41. Let E be a divisor of C . Then E is called exceptional if one can
blow-down along E, with f(E) = Q a point such that dimOQ = 2.

Theorem 42 (Castelnuovo’s criterion). Let C be a regular model of C/K. Let E
be a prime divisor on C . Then E is exceptional if and only if all of the following:

• E ⊆ Cs is contained in the special fibre (in particular it is vertical).
• The arithmetic genus of E is 0.
• E2 = −1 (under the intersection pairing from last time).

Observe:

(1) Blowing down f : C → C ′ removes one exceptional divisor;
(2) there are only finitely many exceptional divisors (follows from noetherian

plus being contained in the special fibre).

Theorem 43. Consider a sequence of blow-downs

C → C1 → C2 → C3 → · · · → CN

such that CN has no exceptional divisors. Then:

• if (CN )s has arithmetic genus at least 1 then CN is a minimal regular model;
• otherwise CN it is relatively minimal.

Note that given an exceptional divisor E ⊆ C and a blow-down f : C → C ′

along E with f(E) = P

(1) C ′, P determine E;
(2) C , E determine C ′.

Example 44. Type II elliptic curves over Qp are given by y2 = X3 − p
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Example 45. Type III are given by y2 = x3 − px

Example 46. Type IV y2 = x3 − p2

Galois action on the special fibre

Consider the action of Gal(kal/k) on the special fibre Cs. For a minimal regular
model of C/K.

Example 47. For example consider an I6 type elliptic curve. Then Galois can act
in a few ways, for instance:
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In fact, one can show using this picture that for In elliptic curves then there are
either 2 or 1 Galois invariant components depending on n mod 2.

Say Cs =
∑N

i=1 riCi = π∗(s) where s is the special point on Spec(R) and π :
C → Spec(R) is the structure morphism. Then

(1) Cs is connected;
(2) ri > 0;
(3) Ci · Cj ≥ 0 for all i ̸= j;

Definition 48. The type of a model is defined to be the collection

(N, (Ci · Cj)i,j , (Ci ·K)i, ri),

where K is in the canonical class.

Theorem 49. For each genus g, there are only finitely many families of types of
minimal regular models.

Theorem 50 (Winters). Let k = kal be an algebraically closed field of characteristic
0. Let C red

s = Z1+ · · ·+Zn be a locally planar reduced curve over k, and let mi ≥ 1
be such that mi |

∑
j ̸=i mj(Zi · Zj). Then there exists a regular model C such that

Cs =
∑n

i=1 miZi.

Lecture 5 (Holly): The Birch and Swinnerton-Dyer
Formula

Statement

Notation 51. Today we adopt the following notation.
• K is a number field
• E/K is an elliptic curve
• |·|v is a normalised absolute value on Kv, the completion of K at a place v
• qv is the cardinality of the residue field at a finite place v.

Conjecture 52. Assuming that XE is finite, and that L(E, s) has analytic con-
tinuation, then the leading term is

#XERegECE

#E(K)2tors
√
|∆K |

,

where ∆K is the discriminant of K, RegE is the regulator.

Today we will focus on the term CE which is constructed of local data.

Definition 53. Fix a regular differential ω ̸= 0 on E/K. Then

CE :=
∏
v∤∞

cE/Kv

∣∣∣∣ ωω◦v
∣∣∣∣
v

·
∏
v|∞

Kv
∼=R

∫
E(Kv)

|ω| ·
∏
v|∞

Kv
∼=C

∫
E(Kv)

|ω ∧ ω| =
∏
v

CE/Kv
.

Here
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• cE/Kv
= [E(Kv) : E0(Kv)] is the Tamagawa number of E at v ∤∞

• ω◦v is the Néron differential for E at v ∤∞.

If E : y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6 is a minimal Weierstrass equation

over Kv then ω◦v = dx
2y+a1x+a3

.

Example 54. For E/Q : y2 = x3 + 1712, the discriminant is ∆E = −23331724, so
the equation is minimal over Qp for p ̸= 17 and hence ω◦p = ±dx

2y for p ̸= 17.
For p = 17 we need the substitution y = 176Y , x = 174X to get E : Y 2 = X3+1

which has discriminant ∆ = −2333 so this model is minimal over Q17 and hence
ω◦17 = dX

2Y = 172 dx
2y .

Remark 55. If E/Q then there is a global minimal model, and so we can do take a
global minimal differential ω to obtain

CE =
∏
p

cE/Qp

∫
E(R)
|ω| .

Remark 56. Each CE/Kv
depends on ω, but note that this can only differ by a

scalar and if α ∈ K× then

CE/Kv
(αω) = |α|v CE/Kv

(ω),

so by the product rule the total expression CE does not depend on this choice.

Lemma 57 (Tate). Let v ∤∞. Then

cE/Kv

∣∣∣∣ ωω◦v
∣∣∣∣
v

= Lv(E, q−1v )−1
∫
E(Kv)

|ω| .

Tamagawa Numbers

Notation 58. Take the following notation
• K is a non-archimedean local field
• OK is the ring of integers
• k is the residue field and has cardinality q
• A/K is an abelian variety, C/K is a smooth proper geometrically connected

curve over K.

Definition 59. Let A/K be a Néron model for A/K. Let ΦA := As/A◦s be the
special fibre of A modulo the connected component of the identity A◦s. We call this
the Néron component group. Then

cA/K = #ΦA(k) = #ΦA(k)
Gal(k/k)

Remark 60. Néron models always exist.

Theorem 61 (Raynaud). Let C/OK be a (minimal?) regular model for the curve
C/K. Let I = {T1, . . . , Tn} be the irreducible components of Cs over k. Write mi

for the multiplicity of Ti. Define, extending linearly, maps

α : ZI → ZI β : ZI → Z

Ti 7→
n∑

j=1

(Ti · Tj)Tj ; Ti 7→ mi.
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Then if A = Jac(C) is the Jacobian, then

ΦA(k) ∼= ker(β)/im(α),

in particular, CA/K = #(ker(β)/im(α))
Gal(k/k)

Remark 62. Note that im(α) ⊆ ker(β) since for fixed i we have an identity
n∑

j=1

mj(Ti · Tj)

since this is the intersection of Ti with the whole special fibre.

Example 63. Consider E : y2 = x3 + 2x2 + p2 over Qp for an odd prime p. Then
you obtain a nodal cubic whose singular point is not regular. This is an elliptic
curve of type II.

We get ker(β) = ⟨T1 − T2⟩Z, and

α(T1) = (T1 · T1)T1 + (T1 · T2)T2 = −2T1 + 2T2 = −2(T1 − T2) = −α(T2),

so ΦA
∼= Z/2Z. Note that Galois swaps T1 and T2 or acts trivially, and in both

cases we have trivial action on ΦA.

Example 64. For n ≥ 3 consider an elliptic curve with reduction type In.

Then ker(β) = ⟨Ti − Ti+1 : i ∈ {1, . . . , n− 1}⟩Z. Write M = ((Ti · Tj))1≤i,j≤n,
then

α : a 7→ a ·M,

the image of α is thus spanned by the columns of M . Computing this we get

M =


−2 1 0 . . . 0 1
1 −2 1 . . . 0 0
0 1 −2 . . . 0 0
...

...
...

. . .
...

...
1 0 0 . . . 1 −2

 .

Then we just get im(α) = ⟨T1 − 2T2 + T3, . . . , Tn−2 − 2Tn−1 + Tn, n(Tn−1 − Tn)⟩Z,
and ΦA

∼= Z/nZ.
If Galois acts trivially then c = n, and else Galois acts nontrivially and we see

the only options depend on parity of n:
• If n is odd then we get c = 1;
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• If n is even then we get c = 2;

Lecture 6 (Ross): Minimal rnc Models I

Notation 65. Today we adopt the following notation.
• R is a DVR
• K = Frac(R) is the fraction field
• k is the residue field
• C/K is a curve of genus g > 0 with rnc model C /R.

Dual Graphs

For each of the finitely many components of the special fibre Γ ⊆ Cs, we write
• gΓ for the geometric genus;
• gaΓ = gΓ +# {loops} for the arithmetic genus;
• mΓ for the multiplicity of Γ, so that as a divisor on C we have Cs =∑

Γ mΓΓ.

Example 66 (I∗0 ). Consider an elliptic curve with I∗0 reduction,
for example py2 = x(x − 1)(x + 1). Then in this case all of the
components are smooth P1s, hence gΓ = 0

Definition 67. The dual graph of Cs is the graph with vertices given by the
irreducible components of Cs and edges for each ordinary double point.

Example 68 (I∗0 ). We have the dual graph of the I∗0 reduction type:

Example 69. Here is a more exotic reduction and its dual graph:

Self Intersection Formula

Lemma 70. Let Γ ⊂ Cs be an irreducible component, and let Γ1, . . . ,Γr be the end
point of all edges which are not loops out of Γ in the dual graph. Then

Γ · Γ = −mΓ1
Γ1 · Γ + · · ·+mΓr

Γr · Γ
mΓ

,

and moreover Γ · Γ = 0 if and only if Γ = Cs is the full special fibre.

Example 71 (I∗0 ). Continuing Example 68 we can now compute Γ0 ·Γ0 = −2 and
γi · γi = −2. In particular we have a minimal model since there are no −1 curves
to blow down.
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Example 72. Continuing Example 69 we can now compute Γ1 · Γ1 = −4 (note
that there are two edges!) and Γ2 ·Γ2 = −1. Looking at Γ2 we see that in fact it is
a smooth P1 which can be blown down and so the minimal model can be obtained
as:

Proof of Lemma 70. We apply results Proposition 32 to obtain that 0 = Γ · Cs =∑
γ mγ(Γ · γ), so that when we rearrange

mΓ(Γ · Γ) = −
∑
γ ̸=γ

mγ(Γ · γ)

= −
r∑

i=1

mΓi
,

as required. The second claim is simply Proposition 32(b)(iii). □

Principal Components

Let Γ and Γ1, . . . ,Γr be as above.

Definition 73. Γ is principal if

(1) Arithmetic genus gaΓ > 0 (i.e. gΓ > 0 or there are loops);
(2) r ≥ 3.

Thus Γ is non-principal if it has geometric genus 0 and at most two edges and no
loops connected to it in the dual graph

Remark 74. The only reduction in genus > 0 with no principal components is In
and its multiples.

Note that non-principal components form chains of smooth P1s, and that these
come in two flavours:

Links:
Chains:

Example 75. Continuing with the example of I∗0 reduction, we have 4 chains
attached to one principal component:
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Example 76. Consider I∗n reduction, then we have a link and 4 chains:

Our goal for the rest of this talk and the next talk will be to classify minimal
rnc models, which we break into two problems:

• Classify all possible principal components (next time)
• Classify all possible chains (today)

Chains

Suppose we have a link chain, so that the dual graph has a line:

Γ0 Γ1 . . . Γr Γr+1.

For brevity, let us further write di = mΓi
for the multiplicity of Γi in Cs.

Hence by Lemma 70, for the components in our link (i.e. for i ∈ {1, . . . , r}) we
have

(2) Γi · Γi = −
di−1 + di+1

di
∈ Z≤0.

Moreover C is minimal rnc if and only if Γ · Γ < −1 for every non-principal com-
ponent Γ in Cs, so we obtain minimality by reducing chains.

Using the theorem of Winters (Theorem 50) we see that it is enough to check
what sequences (di)i are possible combinatorially, since we can then construct a
geometric realisation. The correct definition for the sequences allowed by geometry
is the following.

Definition 77. d0, . . . , dr+1 ∈ Z≥1 is a link sequence if for all i ∈ {1, . . . , r} we
have

di−1 + di+1

di
∈ Z>1.

Example 78. In the case of I∗n in Example 76 we get the sequence 2, 2, . . . , 2. But
there are plenty more (non-constant) sequences we can have, for example:

• 6,5,4,3,2,1;
• 8,3,1,1,1,3,8.

Remark 79. Note the following properties of a link sequence:
• di−1 ≡ −di+1 mod di, so in particular gcd(di−1, di) = gcd(di, di+1). Hence

we obtain

gcd(d0, d1) = gcd(d1, d2) = · · · = gcd(dr, dr+1).

In particular these are all equal to gcd(d0, . . . , dr+1). Hence since our link
is always a multiple of one with gcd = 1, we can reduce to that case.

• Since di−1 + di+1 ≥ 2di, there are no local maxima, so every sequence
either monotonically decreases, monotonically increases, or decreases then
increases with one minimal in the middle.
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Definition 80. The depth of a link sequence (di)
r+1
i=0 with gcd(d0, . . . , dr+1) = g is

# {i : di = g} − 1.

Example 81. The depths of some sequences are:
• 6, 5, 4, 3, 2, 1 is 0;
• 8, 3, 1, 1, 1, 3, 8 is 2;
• the link chain in I∗n is n.

Definition 82. Define

i(d,m) := min {x ∈ Z>0 : dx ≡ gcd(d,m) mod m} .

We now have the main classification theorem for (link) chains.

Theorem 83 (Hirzebruch–Jung, Obus–Wewers, Dokchitser). Fix d0, dr + 1 and
the classes of d1 mod d0 and dr mod dr+1. Then for any link chain (d0, . . . , dr+1)
satisfying these of depth n, we have

(1) gcd(d0, d1) = gcd(dr, dr+1);
(2) n+ i(d1,d0)

d0
+ i(dr,dr+1)

dr+1
> 0.

Conversely, under such conditions a chain exists and is unique.

Remark 84. For open chains you can set dr+1 and obtain analogous results (without
a depth parameter) classifying (uniquely!) open chains.

Lecture 7 (Sam F): L-Functions
We’ll talk about L-functions. You’ve probably seen one before, for example the
Riemann zeta function:

ζ(s) :=
∑
n≥1

n−s =
∏
p

(1− p−s)−1;

or an L−function associated to a Dirichlet character:

L(χ, s) :=
∑
n≥1

χ(n)n−s;

or the L-function assoiated to an elliptic curve E/Q:

L(E, s) :=
∏
p

Lp(E, p−s)−1 ≈
∏
p

(1− app
−s + p · p−2s)−1,

where really
(3)

Lp(E, T ) :=


1− apT + pT 2 if good reduction
1− T if multiplicative reduction with trivial Frobenius action on tangent lines at the singularity (i.e. split)
1 + T if multiplicative reduction with Frobenius action swapping tangent lines at the singularity (i.e. nonsplit)
1 if additive reduction

Morally: L-functions should come from Galois representations. Now to set some
notation.

Notation 85. Let ℓ ̸= p be primes, X/Qp be a ‘nice’ variety, and shorten

Hi(X) := Hi
ét(X,Zℓ)⊗Zℓ

Qℓ.
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Let Gp := Gal(Qp/Qp), let Ip ≤ Gp be the inertia subgroup, and choose a(n
arithmetic) Frobenius element Frobp ∈ Gp. For a Qℓ-vector space V (with Gp-
action) we write

V ∨ := HomQℓ
(V,Qℓ),

where we act on a homomorphism f by σ ∈ Gp via

σ · f(x) := f(σ−1x)

How do we define an associated L-function? As follows.

Definition 86. With notation as above, we write:

Lp(H
i(X), T ) := det

(
1− Frob−1p T | Hi(X)Ip

)
.

Remark 87. Note that the action of Frobenius is well defined and independent of
the choice of Frobenius element when we are looking at Hi(X)Ip , since any two
Frobenii differ by an element of Ip.

Example 88. If X = Spec(Qp) then H0(X) ∼= Qℓ with trivial Gp-action. In
particular, H0(X)Ip = H0(X), and Frobenius also acts trivially so we get

Lp(H
i(Spec(Qp), T ) = 1− T,

which is the correct factor for ζ(s) when T = p−s!

Elliptic Curves

Let E/Qp be an elliptic curve. Then recall the Tate module

Tℓ(E) := lim
←

E[ℓn],

and write Vℓ(E) := Tℓ(E) ⊗Zℓ
Qℓ. Recall also the following, which we take as a

fact:
Fact: H1

ét(E,Zp) ∼= Tℓ(E)∨, and so H1(E) ∼= Vℓ(E)∨.

Good Reduction.

Theorem 89 (Néron–Ogg–Shafarevich). E has good reduction if and only if E[ℓn]
is unramified for all n (and ℓ ̸= p). This is also is equivalent to Tℓ(E) being
unramified, or equivalently Vℓ(E) being unramified.

Note that this means that when we have good reduction for E/Qp we get
H1(E)Ip = H1(E). Moreover then the characteristic polynomial of Frobenius on
Tℓ(E) is T 2−apT+p and so since H1(E) is dual to it, the characteristic polynomial
of Frobenius inverse is the same (and as presented in (3)).

Multiplicative Reduction. Here we have a nodal cusp on the reduction. There
is then the theory of Tate curves.

Theorem 90 (Tate). If E/Qp has split multiplicative reduction then there exists
an element q ∈ Qp

× with |q| < 1 such that

E(Qp) ∼= Qp
×
/qZ,

as Gp-modules.
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In particular, when there is split multiplicative reduction, we have

E[ℓn] ∼= µn
ℓ ×

〈
q1/ℓ

n
〉
.

In particular, if K = Qp(µℓn) then K(q1/n)/K is totally ramified, and K/Qp is
unramified. Moreover any Galois element acts by

σ : q1/n 7→ ζq1/n

for some ζ ∈ µℓn , and so lifts to an element in Ip.
Fix (ζ, 1) and (1, q1/ℓ

n

) as a basis for E[ℓn]. Looking at how such a σ acts,

σ =

(
1 1
0 1

)
,

on the Tate module Vℓ(E). In particular, σ acts on H1(E) = Tℓ(E)∨ as the

transpose inverse and so as
(

1 0
−1 1

)
.

This allows us to conclude that (Tℓ(E)∨)Ip ∼= Qℓ is 1-dimensional since K/Qℓ

was unramified and so we have characterised all Inertia action above. We then have
action by Frobenius which fixes q1/ℓ

n

and maps ζ 7→ ζp. Hence

Frobp =

(
p 0
0 1

)
on Tℓ(E).

Hence the action by the inverse transpose (i.e. the action on H1(E)) is then(
p−1 0
0 1

)
and since we are only interested in the inertia invariants (the right hand

column) we end up with trivial Frobenius action and so

Lp(H
1(E), T ) = 1− T.

Remark 91. In the non-split case one tensors this whole thing with the unramified
quadratic character χ to obtain 1 + T at the end.

Why Tate curves? Why should we have had this weird isomorphism of Tate?
Well, we’d like to generalise the situation over C where

E(C) ∼= C/Λ,

except Qp/Λ is not so nice when Λ is a lattice. If we instead exponentiate, so
E(C) ∼= C×/qΛ, where q = e2πz, then everything works the same for C and now it
is nice for Qp. It turns out that the conditions needed to make all the power series
etc converge is in fact multiplicative reduction!

Models of Curves

Let E/Zp be the Néron model for E. We get the following.

Theorem 92.
H1

ét(E,Qℓ)
Ip ∼= H1

ét(EFp ,Qℓ)
Ip

Remark 93. For a nice curve C, we get H1(C) ∼= H1(Jac(C)).

Sketch proof. E [ℓn] is quasi-finite over Zp, and is isomorphic to some finite F ⊔ stuff
with empty special fibre. E[ℓn]Ip ∼= E [ℓn](Qp)

Ip ∼= F(Qp) ∼= F(Fp) = E(Fp) (so
when one dualises one reaches the trivial module!). □
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Lemma 94. In the multiplicative reduction case,

Lp(H
1(E), T ) =

{
1− T if
1 + T if

Proof. The special fibre of E is Gm × Z/n.

lim
←
EFp [ℓ

n]⊗Zℓ
Qℓ
∼= lim
←

µℓn ⊗Zℓ
Qℓ,

with Galois action. □

Lecture 8 (Matt): Galois Representations

Notation 95. • K non archimedean local field;
• OK the valuation ring;
• k the residue field of characteristic p ̸= ℓ;
• IK the inertia in GK the absolute Galois group;
• Frob is the geometric Frobenius;
• C/K a nice curve with model C /OK ;
• For a GK representation ρ, we write L(ρ, T ) = det(1− FrobT |ρIK );
• L(C, T ) = L(H1(C), T ) where H1(C) := H1

ét(CK ,Qℓ).

Our aim today is to use models to construct Euler factors and recover information
about H1(C).

Theorem 96. Let ρ be an Artin representation of GK , i.e. one which factors
through a finite extension. Then

(1) If ρ is unramified then L(ρ, T ) determines ρ;
(2) If F = {F/K : ResGF

ρ is unramified}, then {L(ResGF
ρ, T )}F∈F deter-

mines ρ.

Corollary 97. One can recover H1(C) from understanding Euler factors for fields
where C is semistable.

In fact if K/Qp then one can take a finite set F only depending on the genus
g(C).

Example 98. (1) ρ = χk
cyc, k ∈ C where χcyc is unramified, χcyc(Frob) = q.

Then
L(ρ, T ) = 1− qkT.

(2) Let χ be the quadratic character of Gal(Qp(
√
p)/Qp), then the restriction

map induces an isomorphism

Gal(Qp(
√
u,
√
p)/Qp(

√
up)) ∼= Gal(Qp(

√
p)/Qp).

But moving a character χ on the right to one χ̃ on the left, we have an
unramified character so can compute χ̃ = ResQ(

√
up) from L(χ̃, T ).

(3) E : y2 = x3+74/Q7. Note that E does not have good reduction but it does
over F = Q7(

3
√
7). Hence by Néron–Ogg–Shafarevich the Galois action

factors through Gal(Qnr
7 ( 3
√
7)/Q7) ∼= C3. Fix ζ3 ≡ 2 mod 7 in Q7 and let

ι : 3
√
7 7→ ζ3

3
√
7. So

ρE(ι) =

(
−1+

√
−3

2 0

0 −1−
√
−3

2

)
,
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since this is an order 3 matrix with trivial determinant by the Weil pairing

(where we are diagonalising). Moreover ρ(Frob) =

(
α 0
0 β

)
The point

count over F = Q7(
3
√
7) : y2 = x3 + 1 which has 12 F7 points so {α, β} ={

−2±
√
−3
}
.

Let F ′ = Q7(
3
√
14), then it is an exercise to show that FrobF ι̇ is a

Frobenius element for F ′. Now over F ′ we have E ∼= y2 = x3 + 2−4 and
#EF ′(F7) = 3. Hence the eigenvalues are 1

2 (5±
√
−3). Hence α = −2−

√
−3

and β = −2 +
√
−3.

Exercise 99. Have some exercises!

(1) Redo the last example with p = 5.
(2) Describe H1(C) for C : y2 = xp − p/Qp (warning, hard!)

Now let’s look at recovering the Euler factor from C . Similar to last time, we
have the following.

Theorem 100. Suppose C /OK is a proper regular model. Then as Gk
∼= GK/IK-

modules we have

H1
ét(C) ∼= H1

ét(Ck)
∼= H1

ét(C
red
k

).

where the first isomorphism holds with Zℓ-coefficients for most ℓ, and the second is
true for Zℓ-coefficients for all ℓ.

Theorem 101. Let X/Fq be a separated variety, then

Z(X,T ) := exp

∑
n≥1

|X(Fqn)|
n

Tn

 =
∏
i

det
(
1− FrobT |Hi

c(XFq
,Qℓ)

)(−1)i+1

,

where the subscript c refers to compactly supported cohomology.

Corollary 102. Let C /OK be a proper regular model. Then

Z(C red
(k)

, T ) =
P1(T )

P0(T )P2(T )
,

where Pi(T ) :=
(
1− FrobT |Hi

ét(C
red
k

)
)
. Moreover, P0(T ) = 1−T and H2

ét(C
red
k

) ∼=
Qℓ(1)[irreducible components] as a Gk-module.

We want L(C, T ) = P1(T ). Recall that log(1− T ) = −
∑

n≥1
Tn

n .

Example 103. Consider type II elliptic curves. Note that Frobenius acts trivially
as components have different multiplicities. We now compute directly:

H2
ét(C ) = Qℓ(1)

⊕3,
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so P2(T ) = (1− qT )3. Let us now compute P1(T ): our point counts are Ck(Fqm) =
3(qm + 1)− 2 = 3qm + 1, and now looking at the zeta function

Z(C red
k

, T ) = exp

∑
n≥1

3pm + 1

m
Tm


= exp

3
∑
n≥1

qm

m
Tm +

∑
n≥1

1

m
Tm


= exp (−3 log(1− qT )− log(1− T ))

=
1

(1− T )(1− qT )3
.

Hence L(C, T ) = Z(C red
k

, T )P0(T )P2(T ) = 1.

Example 104. Consider type In for n even where Frobenius acts nontrivially as
C2 flipping the graph.

Note that we can easily count points to obtain

Ck(Fqm) =

{
2(qm + 1) if m is odd;
nqm if m is even.

Hence

Z(C red
k

, T ) = exp

 ∑
m even

(n− 2)qm − 2

m
Tm +

∑
m≥1

2qm + 2

m
Tm


= exp

∑
s≥1

(n− 2)q2s − 2

2s
T 2s +

∑
m≥1

2qm + 2

m
Tm


Considering each factor separately:

exp

∑
s≥1

(n− 2)q2s − 2

2s
T 2s

 = exp

∑
s≥1

n−2
2 q2sq2s

s
T 2s +

∑
s≥1

1

s
T 2s


=

1− T 2

(1− q2T 2)(n−2)/2
.

Hence Z(C red, T ) = 1−T 2

(1−q2T 2)(n−2)/2(1−T )2(1−qT )2
= 1+T

1−q2T 2

(n−2)/2
(1− T )(1− qT )2.

In particular we know

P2(T ) = (1− qT )2(1− q2T 2)(n−2)/2,

where the first factor comes from 2 rational P1s and the latter from the non-rational
ones. Hence L(C, T ) = 1 + T .
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