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Lecture 1 (Céline): Towards Étale Cohomology
Place yourself in the 1930’s and 40’s, thinking as if you were Weil in those days.
How did Weil think of the conjectures?

I: Historical Background

(1) Finite Fields. Consider a system V of homogeneous polynomials (say, over
Z). As number theorists, we have an obvious goal.

Goal. Understand the integer solutions V (Z).

Remark 1. Gauss first introduced the idea of working modulo some prime p, in
particular, that if V (Fp) = ∅ then V (Z) = ∅.

Assume that the ideal generated by the system V, ⟨V ⟩ ≠ ⟨1⟩. Then the nullstel-
lensatz implies that the algebraic variety V (Fq) is non-empty. From the equality
Fq =

⋃
r∈Z≥0

Fqr , we obtain that the system has a solution over Fqr for some r.
Now note that the polynomial xp − x ∈ Fpr [x] has at most p roots in any algebraic
extension of Fp, and all the elements of Fp satisfy this equation. Therefore, from
here we can look for Frobenius invariant points to find points over Fq.

Goal. Find V (Fqr ) for some r, and then take fixed points under the Frobenius map
x 7→ xq to find points in V (Fq).

We begin by seeking an understanding of #V (Fqr ) for some r. In fact, using gen-
erating functions, it turns out to be easier to study #V (Fq) for all r simultaneously.
With this in mind, Hasse and Weil introduce the Zeta function

Z(V, T ) := exp

∑
r≥1

#V (Frq)
T r

r

 .

(2) Topology of Algebraic Varieties. If V (Fq) ̸= ∅ for every q, then V (C) ̸= ∅,
and in fact V (C) is a complex analytic variety. Indeed, if V is smooth then V (C)
is a complex manifold, and we will write d := dimR V (C).

Poincaré, Alexandroff, Noether et al. defined homology groups Hi(V (C),Q),
together with an intersection product

Hi(V (C),Q)×Hd−i(V (C),Q)→ Q,
1
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such that there is a vector space basis {ei,j} of Hi(V (C),Q) with

ei,a · ed−i,b =

{
1 if a = b,

0 else.
.

The ith Betti number is defined to be bi := dimHi(V (C),Q).

Example 2. If V = PnC, then bi =

{
1 if i ≤ d and is even,
0 else.

Example 3. If V (C) is homeomorphic to a torus with g holes then

(b0, b1, b2) = (1, 2g, 1).

Now consider a (continuous) map F : V (C)→ V (C). Then Lefshetz proved that
the fixed points L(F ) under this map are (in an appropriate sense) counted by the
formula

L(F ) :=

d∑
i=0

(−1)i
∑
k≥0

F∗(ei,k) · ed−i,k

 ,

where F∗ is the induced map on the homology groups. This formula can be under-
stood as the number of intersection points, counted with the multiplicity of the di-
agonal, ∆ = {(x, x) : x ∈ V (C)} and the graph of F, ΓF = {(x, F (x)) : x ∈ V (C))}.
Note that, if F is the identity map then this formula returns the Euler character-
istic L(F ) = χ(V (C)), which can be understood as the self-intersection number of
V (C).

Weil then thinks: if only we had a nice topology and (co)homology theory on
V (Fq), where we could use this Lefshetz fixed point theorem together with F being
the Frobenius map.

II: Weil Conjectures

We now begin by stating the Weil conjectures.

Theorem 4 (Weil Conjectures). Let X/Fq be a smooth projective variety of di-
mension n. Then the following properties hold.

(1) (Rationality) Z(X,T ) is a rational function in T , and moreover

Z(X,T ) =
P1(T )P3(T ) . . . P2n−1(T )

P0(T )P2(T ) . . . P2n(T )
,

where Pi ∈ Z[T ] with Pi(T ) =
∏bi
j=1 1− aijT , for some bi ∈ Z≥0.

(2) (Functional Equation) Z(X,T ) satisfies the functional equation

Z

(
X,

1

qnT

)
= ±qnχ/2TχZ(X,T ),

where χ =
∑2n
i=0(−1)ibi is the Euler characteristic.

(3) (Reimann Hypothesis) The numbers ai,j are q-Weil numbers of weight i,
meaning that

|ai,j | = qi/2,

for all 0 ≤ i ≤ 2n, 1 ≤ j ≤ bi.
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Remark 5. If X is the reduction of a variety defined over a subfield K ⊆ C which
is algebraic over Q, then the bi above are the Betti numbers over C.

Example 6. (1) If X = PnFq
, then

Z(X,T ) = exp

∑
r≥1

#X(Fqr )
r

T r


= exp

∑
r≥1

qr(n+1) − 1

qr − 1

T r

r


= exp

 n∑
i=1

∑
r≥1

T r

r
qri


= exp

(
n∑
i=1

− log
(
1− qiT

))

=

n∏
i=1

1

1− qiT

(2) If X = AnFq
, then

Z(X,T ) = exp

∑
r≥1

qrn

r
T r

 =
1

1− qn

III: Applications

(1) It is clear from how things have been set up that these form a sort of Local–
Global principle, relating cohomology of varieties over C to that over finite
fields Fq.

(2) The Lang–Weil theorem is an application of the Weil conjectures.

Theorem 7. Given non-negative integers n, d, r, with d > 0, then there
exists a constant A = A(n, d, r) > 0 such that for all finite fields k and all
geometrically irreducible subvarieties X ⊆ Pnk of dimension r and degree d,
we have

|#X(k)− qr| ≤ (d− 1)(d− 2)qr−
1
2 +Aqr−1.

(3) We can use this, together with Hensel’s lemma, to deduce the existence of
local points on varieties.

Lecture 2 (Eda): Weil Conjectures for Elliptic Curves

Recollections

Let n ≥ 1 be an integer, q be a prime power, and consider V ⊆ PnFq
a projective

variety given by solutions to some polynomials F1(x0, . . . , xn), . . . , Fm(x0, . . . , xn)
with coefficients in Fq.
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Definition 8. The Zeta function is

Z(V/Fq, T ) := exp

( ∞∑
n=1

#V (Fqn)
Tn

n

)
.

Note that #V (Fqn) = 1
(n−1)!

dn

dTn log(Z(V/Fq, T ))|T=0 can be recovered from this.

Theorem 9 (Weil Conjectures). Let V/Fq be a projective variety of dimension N ,
then the following hold.

(1) (Rationality) Z(V/Fq, T ) ∈ Q(T );
(2) (Functional Equation) There is ε ∈ Z, the Euler characteristic of V , satis-

fying

Z(V/Fq,
1

qNT
) = ±qNε/2T εZ(V/Fq, T ).

(3) (Riemann Hypothesis) Z(V/Fq, T ) = P1(T )...P2N−1(T )
P0(T )...P2N (T ) for each 0 ≤ i ≤ 2n,

the polynomials Pi factor over C as

Pi(T ) =

bi∏
j=1

(1− αi,jT )

with |αi,j | =
√
qi.

(4) (Betti Number) The bi above are the Betti numbers.

Some Basics

Let K be a field. An elliptic curve is a pair (E/K,O) of a (smooth, projective)
genus 1 curve E/K and a base point O ∈ E. Such curves have a natural group
structure, and always have an affine model of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

An isogeny is a morphism (of algebraic varieties) ϕ : E1 → E2 satisfying ϕ(O1) =
O2. Such maps are, in fact, group homomorphisms, and the set of them Hom(E1, E2)
is a torsion free Z-module. Moreover, every isogeny is either the 0 map or surjective!
If E1 = E2 then we write End(E) := Hom(E,E).

If K is a finite field (or indeed, a field of characteristic p > 0), then we have the
Frobenius endomorphisms given by

π : E → E; (x, y) 7→ (zq, yq).

We denote by E[m] the m-torsion points on E, and recall that this group is well
understood.

Theorem 10. If char(K) ∤ m then, as abelian groups, we have an isomorphism

E[m] ∼= Z/mZ× Z/mZ.

So the m-torsion is often a free Z/mZ-module of rank 2.

Definition 11. For a prime number ℓ, the ℓ-adic Tate module of E/K is defined
to be

TℓE := lim
←n

E[ℓn],

with inverse limit taken over the natural maps given by multiplication by ℓ.

Immediately from the above, we have the following.
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Proposition 12. If ℓ ̸= char(K) then

TℓE ∼= Zℓ × Zℓ.

The Weil Pairing

In order to prove the Weil conjectures, we will require the use of the Weil pairing,
which is a very useful pairing on Tate modules of elliptic curves. Recall that the
Abel-Jacobi map

E → Pic0(E) = Div0(E)/div(K(E))

given by P 7→ (P ) − (O) is an isomorphism of groups. We shall make use of this
fact in the construction of the Weil pairing below.

Definition 13 (Weil pairing). Let E be an elliptic curve, and m > 1 be an integer.
The Weil pairing is a map

em : E[m]× E[m] 7→ µm.

For two points P,Q ∈ E[m], the image em(P,Q) is defined as follows.
Firstly, since multiplication by m is an isogeny and so surjective, there exists

Q′ ∈ E such that mQ′ = Q. Consider the divisor

[m]∗(Q)− [m]∗(O) =
∑

R∈E[m]

(Q′ +R)−
∑

R∈E[m]

(R)

On the elliptic curve this sum is equivalent to∑
R∈E[m]

Q′ = m2Q′ = O,

and so there is g ∈ K(E) such that div(g) =
∑
R∈E[m](Q

′ +R)− (R).
Secondly, since mQ = O, there is a function f ∈ K(E) such that

div(f) = m(Q)−m(O).

Note that

div(gm) = mdiv(g) =
∑

R∈E[m]

m(Q′ +R)−m(R) = div(f ◦ [m]).

Thus these functions must differ by a constant, which we scale to 1, so f ◦ [m] = gm.
In summary: from Q ∈ E[m], we have constructed functions f, g ∈ K(E) with

div(f) = m(Q)−m(O);

div(g) =
∑

R∈E[m]

(Q′ +R)− (R).

and f ◦ [m] = gm.
Now to define the Weil pairing: for every X ∈ E, since P ∈ E[m]

g(X + P )m = f(mX +mP ) = f(mX) = gm(X).

In particular, choosing X such that g(X) ̸= 0,∞, g(X+P )
g(X) is an mth root of unity!

The set of such roots of unity will be denoted µm. Using this we now define the
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Weil pairing

em : E[m]× E[m] 7→ µm

(P,Q) 7→ g(P +X)

g(X)
.

Remark 14. One can check that this pairing is independent of the choice of X, and
that for n | m, the pairings en, em are compatible via multiplication by m/n.

Definition 15 (ℓ-adic Weil pairing). If ℓ ̸= char(K) is a prime, then the ℓ-adic
pairing is a pairing induced by the compatible system of Weil pairings eℓn above

e : TℓE × TℓE → Tℓµ,

were Tℓµ is the ℓ-adic Tate module of K
×

(inverse limit of µℓd over d and with
usual multiplication maps).

Lemma 16. The Weil pairing has several properties. It is

• bilinear,
• alternating,
• non-degenereate, and
• Galois-equivariant.

In addition, dual isogenies are adjoint with respect to the Weil pairing.

The Characteristic Polynomial of Frobenius

Lemma 17. Let ϕ ∈ End(E), then there is a map ϕ : TℓE → TℓE induced on the
Tate module. We choose a Zℓ-basis {P,Q} for TℓE, and write

ϕ(P ) = [a]P + [b]Q, ϕ(Q) = [c]P + [d]Q,

so that we can represent ϕ by the matrix ϕℓ :=

(
a b
c d

)
.

Then det(ϕℓ) = deg(ϕ), and tr(ϕℓ) = 1 + deg(ϕ)− deg(1− ϕ).

Remark 18. We often write det(ϕ) and tr(ϕ) for these quantities, since it is implicit
in this lemma that they are independent of ℓ.

Proof. Using properties of the ℓ-adic Weil pairing stated above in Lemma 16, and
writing ϕ̂ for the dual isogeny to ϕ (so ϕ̂ϕ = [deg(ϕ)])

e(P,Q)deg(ϕ) = e([deg(ϕ)]P,Q)

= e(ϕ̂ϕ(P ), Q)

= e(ϕ(P ), ϕ(Q))

= e([a]P + [b]Q, [c]P + [d]Q)

= e(P,Q)ad−bc

= e(P,Q)det(ϕℓ).
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Since the Weil pairing is surjective onto Tℓµ, this shows the first claim. For the
trace, we directly compute

1 + deg(ϕ)− deg(1− ϕ) = 1 + det(ϕℓ)− deg(1− ϕℓ)

= 1 + ad− bc− (1− a)(1− d) + bc

= a+ d

= tr(ϕℓ)

□

Proposition 19. Let E/Fq be an elliptic curve and π : E → E be the qth power
frobenius. Let a = q + 1 − #E(Fq). Then the characteristic polynomial for the
action of πℓ on TℓE is given by

C(T ) = T 2 − aT + q,

and moreover if α, β ∈ C are the roots of C(T ) then α and β are a complex conjugate
pair such that |α| = |β| = q1/2, and for every n ≥ 1

#E(Fqn) = qn + 1− αn − βn.

Proof. For P ∈ E(Fq), P ∈ E(Fq) if and only if π(P ) = P . In particular, E(Fq) =
ker(1− π) and 1− π is a seperable morphism. Thus

#E(Fq) = #ker(1− π) = deg(1− π),

and det(πℓ) = deg(π) = q, and so by Lemma 17

tr(π) = 1 + deg(π)− deg(1− π) = 1 + q −#E(Fq) = a.

Thus C(T ) is the characteristic polynomial for the action of π on the ℓ-adic Tate
module, and α, β are the eigenvalues of this action. Note that for every pair (m,n) ∈
Z× Z̸=0 it follows from Lemma 17

C(m/n) = det(m/n− πℓ) =
det(m− nπℓ)

n2
=

deg([m]− nπ)

n2
≥ 0.

In particular, C is a quadratic polynomial taking no negative values on Q (equiva-
lently on R), and so must have either no roots in R or a double root in R. In par-
ticular, the claim that α, β are complex conjugates holds. Moreover, since αβ = q,
we must have |α| = |β| = √q.

Now to produce the point counting formula we again note (now replacing q with
qn), that the characteristic polynomial of πnℓ is

det(T − πnℓ ) = T 2 − tr(πnℓ )T + det(πnℓ ).

In particular, by classical linear algebra, the eigenvalues of πnℓ are αn, βn and so

#E(Fqn) = deg(1− πn) = det(1− πnℓ ) = 1− (αn + βn) + qn,

as required. □
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The Weil Conjectures

We are now ready to give the proof of the Weil conjectures for elliptic curves.

Theorem 20 (Weil Conjectures for Elliptic Curves). Let E/Fq be an elliptic curve,
then the following statements are true.

(i) (Rationality) Z(E/Fq, T ) ∈ Q(T ).
(ii) (Functional Equation) The Euler characteristic of a smooth lift of E to C

is ε = 0, and

Z(E/Fq,
1

qT
) = ±Z(E/Fq, T ).

(iii) (Riemann Hypothesis) Z(E/Fq, T ) = P1(T )
P0(T )P2(T ) , and the polynomials Pi

factor over C as

Pi(T ) =

bi∏
j=1

(1− αi,jT )

with |αi,j | =
√
qi.

(iv) (Betti Number) The bi above are the Betti numbers, given by

(b0, b1, b2) = (1, 2, 1).

Proof. We will make extensive use of Proposition 19 in proving this. Directly
computing, with α, β the eigenvalues of Frobenius acting on the ℓ-adic Tate module:

Z(E/Fq, T ) = exp

∑
r≥1

#E(Fqr )
T r

r


= exp

∑
r≥1

(1 + qr − αr − βr)
T r

r


= exp (− log(1− T )− log(1− qT ) + log(1− αT ) + log(1− βT ))

=
(1− αT )(1− βT )

(1− T )(1− qT )
,

in particular, writing a(E) = q + 1 −#E(Fq) ∈ Z, it follows from Proposition 19
that

(1) Z(E/Fq, T ) =
1− a(E)T + qT 2

(1− T )(1− qT )
.

We now verify each claim.
(i) Immediate from (1).
(ii) We note that the Betti numbers of a complex torus are

(b0, b1, b2) = (1, 2, 1),

which is an elementary computation in algebraic topology. From this we see
that the Euler characteristic ε = 0, and that we must prove Z(E/Fq, T ) =
Z(E/F1, 1/qT ). This is also clear from (1) since

Z

(
E/Fq,

1

qT

)
=

1− a(E)
qT + q

q2T 2(
1− 1

qT

)(
1− q

qT

) =
qT 2 − a(E)T + 1

(qT − 1)(T − 1)
= Z(E/Fq, T ).
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(iii) Follows from (1): the claim for the numerator, P1(T ) = (1− αT )(1− βT )
follows from Proposition 19, and for P0, P2 this is apparent.

(iv) We have already computed the Betti numbers above, and the degrees of Pi
clearly match up appropriately.

□

Lecture 3 (Gergely): Proving the Weil Conjectures
(Assuming Cohomology Exists!)

In the first talk we defined the Zeta function of a variety over a finite field

Z(X/Fq, T ) := exp

( ∞∑
n=1

#X(Fqn)
Tn

n

)
,

and stated the Weil conjectures. Today we will focus on rationality, as the others
are more involved. The statement is as follows.

Theorem 21. For every smooth, complete variety over a finite field Fq, then
Z(X/Fq, T ) ∈ Q(T )

For a field K of characteristic 0, a cohomology theory is a contravariant functor

{nice varieties
over k } H∗

−→ {Graded K-algebras} .

where we decompose H∗(X) =
⊕

i∈Z H
i(X), with hi · hj ∈ Hi+j(X). Moreover,

since this is a functor, maps of varieties go to maps of K-algebras. The Weil axioms
are then the following.

Definition 22. H∗ satisfies the Weil axioms if for every variety X of dimension d

(1) Hi(X) is finite dimensional over K.
(2) If i < 0 or i > 2d then Hi(X) = 0.
(3) H2d(X) ∼= K.
(4) (Poincaré Duality) there is a perfect pairing

Hi(X)×H2d−i(X)→ H2d(X) ∼= K.

(5) (Künneth isomorphism)

H∗(X)⊗K H∗(Y ) ∼= H∗(X × Y ).

(6) (Lefschetz trace formula) We will not define this yet.

Theorem 23. There exists a cohomology theory H∗ét which satisfies the Weil axioms
when k is algebraically closed and K = Qℓ for some prime ℓ such that ℓ ∤ char(k).

Definition 24. We now state the Lefschetz trace formula. For a morphism of
varieties ϕ : X → X, we define:

• Γϕ ⊆ X ×X to be the graph of the morphism.
• ∆ := {(x, x)} ⊆ X ×X to be the diagonal.

Then the Lefschetz formula is

(Γϕ ·∆) =

2 dimX∑
i=0

(−1)itr (ϕr|Hr
ét(X;Qℓ)) ,

where the left hand side is the intersection pairing.
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Lemma 25. Assume that for all P ∈ X, both det(Id−∂Pϕ) ̸= 0 and (Γϕ ·∆)P = 1.
Then

(Γϕ ·∆) = #Γϕ ∩∆

Note that this will allow us to count fixed points under ϕ! Consider the qth
power Frobenius automorphism F , and its action on X(Fq) for a variety X/Fq.

Theorem 26 (Rationality, version 2). Z(X/Fq, T ) = P0(T )...P2d−1(T )
P1(T )...P2d(T ) , where

Pr(T ) = det (1− FT |Hr
ét(X,Qℓ)) .

Note that this almost implies rationality – it proves that Z(X/Fq, T ) ∈ Qℓ(T ).

Proof. Claim 1 Fn is nondegenerate and det(Id− ∂PF
n) ̸= 0 for all P ∈ X.

Claim 2 #X(Fqn) is the set of fixed points under Fn.
These two claims, together with the Lefschetz trace formula, show that

#X(Fqn) =
2d∑
r=0

(−1)rtr (Fn|Hr
ét(X,Qℓ)) .

We then compute

Z(X/Fq, T ) = exp

( ∞∑
n=1

#X(Fqn)
Tn

n

)

= exp

( ∞∑
n=1

2d∑
r=0

(−1)rtr (Fn|Hr
ét(X,Qℓ))

Tn

n

)

=

2d∏
r=0

exp

( ∞∑
n=1

tr (Fn|Hr
ét(X,Qℓ))

Tn

n

)(−1)r

.

We then use the following claims
Claim 3 For any linear map of vector spaces ϕ,

log

(
1

det(1− ϕT )

)
=
∑
n≥1

tr(ϕm)
Tm

m

Claim 4 If det(1− ϕT ) =
∏
i(1− ciT ) then tr(ϕm) =

∑
i c
m
i .

Using these we obtain
2d∏
r=0

exp

( ∞∑
n=1

tr (Fn|Hr
ét(X,Qℓ))

Tn

n

)(−1)r

=

2d∏
r=0

exp

(
log

(
1

det(1− FT )

))(−1)r

=

2d∏
r=0

det(1− FT )
(−1)r+1

.

as required. □

It now remains to show that our Zeta function is in fact in Q(T ). This follows
from the lemma below.

Lemma 27. If K is a subfield of L, and f ∈ K[[T ]] ∩ L(T ) then f ∈ K(T ).
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Proof. Write f =
∑
i≥0 aiT for some ai ∈ K. Then it is a rational function if and

only if there exists λ1, . . . , λr and D such that for all n ≥ D
∑
i λian+i−1 = 0.

Which shows rationality. □

Lecture 4 (Besfort): Étale Cohomology I

Recap and Motivation

So far we have shown (or rather plausibly sketched the proofs of) the Weil con-
jectures for elliptic curves, as well as the Weil conjectures in some more generality
assuming the existence of a suitable cohomology theory. To come up with a coho-
mology theory in the case of elliptic curves, say, one might be tempted to regard
a fixed elliptic curve E as a variety over Fp with the Zariski topology (with the
defining property that zero sets of polynomials are closed) and work with singular
cohomology with Z-coefficients. Unfortunately, this turns out not to work, for we
will sketch a proof that Hr(X;Z) = 0 for r > 0 if X is an irreducible variety (in
fact we will sketch the proof of a slightly stronger statement).

Before we get onto this, let us take a brief detour and say something about the
assumption l ∤ char k in the theorem assuring the existence of a suitable cohomology
theory from the previous lecture.

Lemma 28 (Serre). There cannot exist a cohomology theory with coefficients in R
(satisfying the Weil axioms from the previous lecture) which associates graded R-
vector spaces to “nice” varieties over an algebraically closed field k of characteristic
p > 0, with the property that H1E ∼= R2 for all elliptic curves E.

Proof sketch. Let E be a supersingular elliptic curve (for our purposes, this means
that Endk E ⊗Z R ∼= H, where H is the division algebra of quaternions – this is
equivalent to E having no non-trivial p-torsion points). Then Endk E acts on E
so if a cohomology theory satisfying the conditions stated in the lemma were to
exist, we would get a Endk E-module structure on H1E. Extending the scalars by
tensoring with R, we get a H-module structure on H1E ∼= R2, which is impossible
since H has real dimension 4. □

The same proof goes through if we replace R with Q or Qp for p = char k,
whereas for Qℓ with ℓ ̸= p, we no longer get the division algebra of quaternions.

Sheaf Cohomology

In the 19th and 20th centuries, there were a number of existing cohomology the-
ories of topological spaces. They were eventually unified by Eilenberg and Steenrod
in 1953, who showed that for a suitable category of pairs of topological spaces, there
exists a unique cohomology theory satisfying a list of natural axioms. Perhaps one
downside of this theory is that the underlying coefficient group is essentially fixed.
This is where sheaf cohomology enters the picture, where rather than unifying co-
homology theory of varying topological spaces, the goal now is to systematically
track algebraic data that is (locally) associated to a fixed topological space X.

More precisely, consider the category OX of open subsets of a fixed topological
space X, with morphisms given by inclusions U ↪→ V . A presheaf is simply a local
assignment of algebraic data respecting restriction, that is, a contravariant functor
F : OX → Ab, where Ab is the category of abelian groups. Elements of FU for U
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open in X are called sections of F over U . For U ↪→ V , we denote the image of
a section s in FV under the map FV → FU by s|U . A sheaf is then a presheaf
where global sections are determined by local sections and such that there is local
consistency. More precisely:

Definition 29. Let X be a topological space. A sheaf over X is a presheaf F :
OX → Ab such that for every U open in X and every open cover {Ui}i∈I of U , the
sequence

0→ FU →
∏
i∈I
FUi →

∏
i,j∈I

F(Ui ∩ Uj)

is exact, where the first (non-trivial) map is the natural one, whereas the second is
the map (fi)i∈I 7→ (fi|Ui∩Uj − fj |Ui∩Uj )i,j .

Example 30. One natural example of a sheaf on a topological space X is the
assignment of continuous maps U → C to each open subset U of X. Here for
U ↪→ V and s a section over V (i.e. a continuous map V → C), s|U is genuinely
the restriction of the map s to U .

Example 31. Let G be an abelian group with the discrete topology. As above, for
a topological space X and any open subset U of X, let FU be the set of continuous
maps U → G. These must be locally constant and as such they factor through the
space π0U of connected components of U . Therefore FU may be identified with
Gπ0U . This sheaf is called the constant sheaf defined by G. This will allow us to
recover singular cohomology with G-coefficients.

It turns out (a theorem proven by Grothendieck) that the category of sheaves on
X with the natural morphisms is an abelian category. We shall not define what an
abelian category is precisely, but for our purposes it suffices to say that the notions
of injective and surjective morphisms are particularly well behaved and not too
different from the usual notions. In this regard, we have (we will call the following
a definition but perhaps more correctly it should be called a lemma):

Definition 32. Let B and C be sheaves over a topological space X.
A morphism B → C is injective if for any U open in X, the homomorphism

BU → CU is injective.
A morphism m : B → C is surjective if for any U open in X, any s ∈ CU and any

x ∈ U , there exists an open x ∈ V ⊆ U such that s|V = m(s′) for some s′ ∈ BV .

Note the subtlety in the definition of surjective – we only require that sections of
C lift locally to a section of B. But now a very natural question arises: given a sur-
jective morphism B → C, do all sections of C arise from sections of B (globally)? If
not, to what extent does this fail? This is a very general model encapsulating many
local versus global questions in geometry and number theory, and sheaf cohomology
provides an answer to this.

Note that a surjective morphism B → C gives rise to (or may be equivalently
rewritten as) a short exact sequence of sheaves

0→ A→ B → C → 0,

where A is the kernel of the morphism B → C. If everything is right with the
world, this “should” induce a long exact sequence of cohomology groups and we
need to figure out how. A reasonable start is to move to the category of abelian
groups via the functor F 7→ FX ∈ Ab. However, while this functor is left-exact
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(i.e. 0 → AX → BX → CX is exact), it is not right-exact (i.e. we cannot add
a 0 at the end of the sequence just written). We would like to continue the exact
sequence of abelian groups and a method in category theory that is built to do this
is through right derived functors. In order to work, this requires the existence of
“enough injectives” in the category of sheaves, another fact proven by Grothendieck.
This allows us, for any starting sheaf F , to construct an injective resolution, that
is, an exact sequence

0→ F → I0 → I1 7→ I2 7→ · · · ,

where each Ir is injective (i.e. any morphism A → Ir extends to a morphism B →
Ir for any sheaf B containing A – the key point here is obtaining a resolution, but
we want the cohomology groups defined below to be independent of the resolution
and this is where injectivity comes in). Passing to the category of abelian groups,
we obtain a chain complex of abelian groups, namely

0→ I0X → I1X → I2X → · · · .

Finally, we define

Hr(X;F) = ker(IrX → Ir+1X)/ im(Ir−1X → IrX).

With this definition, we get the induced long exact sequence

0→ H0(X;A)→ H0(X;B)→ H0(X; C)→ H1(X;A)→ · · · ,

as desired.
Before we go back to varieties, we need one more definition.

Definition 33. A sheaf F over a topological space X is called flabby if the mor-
phisms FV → FU are surjective for any U ⊆ V .

A key lemma that we will use without proof is the following (although this should
not come as a surprise – the definition of flabby is in some sense a lifting of local
sections to global ones, so the cohomology groups “should” vanish).

Lemma 34. If F is a flabby sheaf over a topological space X, then Hr(X;F) = 0
for r > 0.

The Inadequacy of Zariski Topology

After all this work, we show that equipping an irreducible variety X with the
Zariski topology (irreducible means that no two non-empty open sets are disjoint)
actually produces trivial cohomology groups with respect to constant sheaves.

Theorem 35 (Grothendieck). If X is an irreducible topological space, then the
cohomology groups Hr(X;F) vanish for r > 0 if F is a constant sheaf defined by a
discrete group G.

Proof. We apply Lemma 34. Let U be a non-empty open subset in X. Since X is
irreducible, we have that U is connected, i.e. π0U is trivial. As such, by Example
31 we have FU = G for every non-empty U in X. This obviously implies that F is
flabby, thus the conclusion follows by Lemma 34. □
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Étale Covers

Now that we have proved Theorem 35, it remains to discuss what modifications
need to be made to define a suitable cohomology theory. We begin with the following
definition.

Definition 36. Let X and Y be nonsingular algebraic varieties over an alge-
braically closed field k. A regular (i.e. locally represented by polynomials) map
φ : X → Y is said to be étale at x if dφ : TxX → TφxY is an isomorphism. We call
φ étale if it is étale at x for every x ∈ X.

Note that in analogy with differential geometry, étale maps are supposed to
capture “local sameness” (but this analogy fails when X and Y are equipped with
the Zariski topology). It turns out, that upon replacing the notion of topology with
a more general framework, namely replacing open sets and inclusions by étale maps
U → X, one obtains a suitable cohomology theory. To define sheaves similarly as
before, we need a notion of covering – this will simply be a family of étale maps
(φi : Ui → U)i∈I such that U =

⋃
i∈I φi(Ui). Now consider the category

Xét

consisting of étale maps U → X and morphisms (U → X)→ (V → X) given by a
map U → V such that

(U → V → X) ≡ (U → X) .

(It is a simple exercise to show that the map U → V is automatically étale.) One
then defines presheaves, sheaves and the cohomology groups Hr

ét(X;F) in much
the same way as before.

In comparison with the complex topology on X(C) for a complex nonsingular
algebraic variety X, one can show that for every finite abelian group G, we have
Hr

ét(X;G) ∼= Hr(X(C);G). We may extend this to Hr
ét(X;Ql) ∼= Hr(X(C);Qℓ)

for any prime ℓ by taking G = Z/ℓnZ, passing to the inverse limit over n and then
tensoring with Qℓ (viewed as a Zℓ-module).

Lecture 5 (Ross): Étale Cohomology II
We recall sheaf cohomology briefly below, since today and next week will be con-
cerned with a generalisation of this. We begin with a topological space X.

Categorification. We begin with the following category.
Name: OX

Objects: open sets U ⊆ X
Morphisms: inclusions of open sets.

For example, a diagram in OX may look like:

V X

U

=
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A presheaf on OX is a contravariant functor F : OX → Ab. If U is an open
set, then we think of elements of F(U) as functions on U . The contravariance of
F simply reverses the direction of morphisms. This is to mimic the idea that the
inclusion U ⊆ V corresponds to a “restriction” of a function

F(V ) ∋ f 7→ f |U ∈ F(U).

Sheaf. A presheaf is a sheaf if for every open covering V =
⋃
i Ui in OX the natural

equaliser diagram below is exact:

0 F(V )
∏
i F(Ui)

∏
i,j F(Ui ∩ Uj) .

The conditions of exactness are interpreted below as though the elements are func-
tions on the space for intuition.

• Exactness at F(V ): If f ∈ F(V ) is zero when re-
stricted to every Ui, then since these cover V it is zero
on V .
• Exactness at

∏
i F(Ui): If (fi)i is a collection of func-

tions which agree wherever their domains overlap (i.e.
fi|Ui∩Uj = fj |Ui∩Uj ), then can assemble a well defined
function f ∈ F(V ) such that f |Ui = fi for every i.

Cohomology. Given X and a sheaf F as above, we build the cohomology groups
Hn(X,F) as follows. Take an injective resolution of sheaves:

0 F I(0) I(1) I(2) I(3) . . . (Exact sequence of sheaves)
We then evaluate this sequence at X and delete F , to produce the complex

0 I(0) I(1)(X) I(2)(X) I(3)(X) . . . (complex of abelian groups)
The nth sheaf cohomology group is then the nth homology of this sequence, i.e.

Hn(X;F) :=
ker
(
I(n)(X)→ I(n+1)(X)

)
im
(
I(n−1)(X)→ I(n)(X)

) .
Problem. Hn(X;F) = 0 for n > 0 when X is irreducible and F is flabby.

Today. We replace OX with a different category where this does not happen.

Étale Maps

We begin by introducing the notion of étaleness.

Definition 37. Define the following.
• A morphism f : A→ B of rings is Étale if it is given by

A→ B =
A[x1, . . . , xn]

⟨f1, . . . , fn⟩
,

where det
(
∂fi
∂xj

)
∈ B×.

• A map of varieties (or schemes) f : X → Y is étale at x ∈ X if it is locally
given by an étale ring map. That is, if there exist open affine patches
x ∈ U ⊆ X and V ⊆ Y with f(U) ⊆ V and such that the induced map on
rings of regular functions k[V ]→ k[U ] is étale.

• We say that a map of varieties (or schemes) X → Y is étale if it is étale at
every point x ∈ X
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Example 38.
Let C =

{
y2 = x

}
⊆ A2 be the parabola. Consider the

projection map onto the y-axis:

f : C → A1, (x, y) 7→ y.

The rings of regular functions, and corresponding map, are
given by the natural inclusion

f∗ : k[y]→ k[C] =
k[y][x]

⟨x− y2⟩
.

We now compute ∂
∂x (x− y2) = 1 ∈ k[C]×, and so this projection is étale.

Nonexample 39.
Continuing with the parabola C =

{
y2 = x

}
⊆ A2, con-

sider the projection map onto the x-axis:

f : C → A1, (x, y) 7→ x.

Geometrically this looks different to the projection onto y –
locally near the turning point at (0, 0) there is a sharp turn.
The rings of regular functions and corresponding map are
given by the natural inclusion

f∗ : k[x]→ k[C] =
k[x][y]

⟨y2 − x⟩
.

We now compute ∂
∂y (y

2−x) = 2y ̸∈ k[C]×. Let us assume that we are not in char-
acteristic 2, so that this is not simply 0. In every affine open containing (0, 0), the
function y is not invertible, and so the map cannot be invertible at (0, 0) and so is
not étale. On C\ {(0, 0)} (where the ring of regular functions is k[C][ 1y ]), we have
2y ∈ k[C]× and so the map is étale on C\ {(0, 0)}.

There are some equivalent definitions of étaleness, which may be more or less
illuminating for you depending on your background. These may give you alternative
ways to verify or think of the concept of étaleness.

Proposition 40. The following are equivalent for a morphism f : X → Y of
varieties (or schemes)

(i) f is étale
(ii) f is flat and unramified
(iii) f is smooth and unramified

Denote the local ring at x ∈ X by OX,x (and similarly for f(x) ∈ Y ), and recall
that f : X → Y induces a map of rings f∗ : OY,f(x) → OX,x. Then, at x, f is:

• unramified if all of the following hold.
– f∗ is of finite type.
– f∗ takes the maximal ideal to the maximal ideal, i.e.

f∗(mf(x)) · OX,x = mx

– f∗ induces a finite separable extension of the residue fields, i.e. the
induced field extension below is finite and separable:

OX,x
mx

/OY,f(x)
mf(x)

.
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• flat if the functor −⊗OY,f(x)
OX,x induced by f∗ is exact.

• smooth (of relative dimension r) if it can be presented as

A 7→ B =
A[x1, . . . , xn]

⟨f1, . . . , fn−r⟩

with rank
(
∂fi
∂xj

)
i,j

= r.

Remark 41. Note that étaleness is being smooth with relative dimension 0.

Example 42. A field extension L/K (i.e. Spec(L)→ Spec(K)) is étale if and only
if it is finite and separable. In general, a K-algebra A is étale if and only if it is a
finite product of finite separable field extensions. That is,

A ∼=
r∏
i=1

Li

for some r ≥ 1 with each Li/K being a finite separable field extension. One can
see this, for example, using Proposition 40(iii).

Example 43. Let L/K be a finite extension of number fields, and consider the
inclusion of rings of integers OK → OL. This is étale if and only if it is everywhere
unramified. One can see this by Proposition 40(ii). Indeed, one only needs to check
flatness: if S is a finite set of primes which cover the class group of K then OL,S is
free over OK,S , and so we are locally flat at every prime p ̸∈ S. Choosing a second
such S which is disjoint from the first we obtain flatness at the remaining primes.

Example 44. Let f : E → E′ be a (nonzero) isogeny of elliptic curves, then f is
étale if and only if it is separable. One can see this via Proposition 40(iii).

We conclude our discussion of étale maps with some properties of them.

Proposition 45. The following properties hold.

(i) Base change preserves étaleness.
(ii) Given a commutative triangle of morphisms

X

Y Z

f
g

h

,

then
• f, g étale =⇒ h étale.
• g, h étale =⇒ f étale.

(iii) if f : X → Y is étale, then f(X) ⊆ Y is open.

Étale Sheaves

Let X be a variety (or scheme). We will mirror the sheaf cohomology summary.
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Categorification. We replace OX with the following category.
Name: Xét

Objects: étale X-schemes (schemes equipped with an étale map to X)
Morphisms: morphisms of X-schemes (maps U → V which commute with the

structural étale maps to X)
Note that by Proposition 45(ii) the morphisms in this category are automatically
étale. For example, a diagram in Xét may look like:

V X

U

ϕ

ψ
=

where V → X and U → X (and so necesarily U → V ) are étale maps.
Much like before, a presheaf is a contravariant functor F : Xét → Ab. The con-
travariance mimics pulling back functions as before: given a function f ∈ F(V )
and a map ϕ : U → V , we obtain a function ϕ∗f ∈ F(U) (thought of as f ◦ ϕ).

Sheaves. There are two concepts in the sheaf condition for OX which we will need
to replace in Xét (since they don’t make sense here!). One is the idea of covering a
subspace V with a collection of open Ui; the other is the idea of intersecting open
sets.

Étale Covers. In Xét we replace the idea of covering V with opens, with the idea
of covering it with étale schemes! Naturally, an étale cover
of V ∈ Xét is a collection of Ui ∈ Xét and morphisms
in Xét ϕi : Ui → V such that (as a topological space)
V = ∪iϕi(Ui).

Intersections. It does not make sense to intersect two étale X-schemes, so we must
do some soul searching about what ‘intersection’ means as a categorical concept in
OX. One way to characterise the intersection Ui ∩ Uj of two opens in X is that it
is the open set which contains every open set W which is contained in both Ui and
Uj . This is a trivial rephrasing, but it intentionally mimics the definition of a fibre
product (cf Definition 87). In other words, Ui ∩ Uj = Ui ×V Uj in OX, and so we
replace intersections with fibre products (which exist in Xét).

Sheaf Condition. We can now state the sheaf condition. A presheaf F is a sheaf if
for every étale cover V =

⋃
i ϕi(Ui) in Xét the induced equaliser diagram below is

exact:
0 F(V )

∏
i F(Ui)

∏
i,j F(Ui ×V Uj) .

Next time we will discuss cohomology.

Lecture 5.5 (Ross) Étale Cohomology II.5
To conclude our discussion last time, we will briefly define Étale cohomology and

give a couple of examples. Recall our setup: Let X be a variety (or scheme).
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Categorification. We work with the following category
Name: Xét

Objects: étale X-schemes (schemes equipped with an étale map to X)
Morphisms: morphisms of X-schemes (maps U → V which commute with the

structural étale maps to X)
By Proposition 45(ii) the morphisms in this category are automatically étale. An
étale presheaf is a contravariant functor F : Xét → Ab.

Sheaves. An étale presheaf F is a sheaf if for every étale cover V =
⋃
i ϕi(Ui) in

Xét the induced equaliser diagram below is exact:

0 F(V )
∏
i F(Ui)

∏
i,j F(Ui ×V Uj) .

Cohomology. Given X and an étale sheaf F , we construct the étale cohomology
groups Hn

ét(X;F) as follows. Take an injective resolution of étale sheaves

0 F I(0) I(1) I(2) I(3) . . . (Exact sequence of étale sheaves)
We then evaluate this sequence at X (viewed as an étale X-scheme via the identity
map X → X) and delete F , to produce the complex

0 I(0) I(1)(X) I(2)(X) I(3)(X) . . . (complex of abelian groups)
The nth sheaf cohomology group is then the nth homology of this sequence, i.e.

Hn(X;F) :=
ker
(
I(n)(X)→ I(n+1)(X)

)
im
(
I(n−1)(X)→ I(n)(X)

) .
One thing we have not discussed is what exactness means for étale sheaves.

Definition 46. A complex of sheaves on Xét

F G Hα β

is exact in the middle position if for every étale X-scheme U and every element
α ∈ ker (G(U)→ H(U)), there is an étale cover {Ui → U} such that

α|Ui
∈ im(F(Ui)→ G(Ui))

Some Properties. Below we point out some properties of étale cohomology, all
of which can be deduced from the definition above by diagram chasing homological
algebra arguments and the properties of étale maps from last time.

Proposition 47. Given a variety (or scheme) X and étale sheaf F on Xét, the
étale cohomology groups Hn(X;F) satisfy the following.

(1) H0
ét(X;F) = F(X)

(2) They are functorial in F : if F → G is a morphism of étale sheaves on Xét
then it induces a homomorphism of groups Hn(X;F)→ Hn(X;F).

(3) short exact sequences of sheaves induce long exact sequences of cohomology:
given a short exact sequence of étale sheaves on Xét

0→ F1 → F2 → F3 → 0,

the maps (and snake lemma) induce a long exact sequence

0→ H0(X;F1)→ H0(X;F2)→ H0(X;F3)→ H1(X;F1)→ . . . .
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(4) They are (contravariantly) functorial in X: if Y → X is an étale morphism
of varieties (or schemes), and F is an étale sheaf on Xét then there is an
induced map

Hn(X;F)→ Hn(Y ;ϕ∗F),
where ϕ∗F is the étale sheaf on Yét given by pullback: (V → Y ) 7→ F(V →
Y → X).

Example

We will now get our hands dirty with a particularly interesting sheaf: Gm.
Beforehand we introduce some words for everyones benefit.

Remark 48. For a scheme X, we have an associated structure sheaf OX . This is a
functor which takes in open subsets U ⊆ X and returns a ring OX(U). We often
refer to OX(X) as the global sections on X. If you prefer to think of varieties, you
may think that X/k is a variety and OX(U) = k[U ] is the ring of regular functions
on an open subset U .

Definition 49. Let X be a scheme, and let Gm be the functor which sends a
scheme U to the group of units of its global sections OU (U)∗. For an integer n ≥ 2,
let µn be the functor U 7→ {x ∈ OU (U) : xn = 1}.

Consider the sequence of sheaves

(2) 0 µn Gm Gm 0.
×n

Clearly by construction, µn is the kernel of the nth power map, and so this sequence
is exact if and only if ×n surjects (as a morphism of sheaves on Xét).

Example 50. If X = Spec(K) is the spectrum of a field, then X is a singleton set,
equipped with the structure sheaf OX for which OX(X) = K.

Lemma 51. Let X = Spec(K) for a perfect field K, then (2) is:
• Not necessarily exact on OX
• Exact on Xét

Proof. For OX: the definition of exactness is that the sequence is locally exact (i.e.
on a neighbourhood of a point). Since X is a singleton set, the only open set is
X = Spec(K), and the map x 7→ xn is not surjective on K× in general, for example
if K = Q. Hence the sequence is not necessarily exact. Of course if K = Q (or
indeed is just closed under taking nth roots), then the sequence is exact.

For Xét we now need to check surjectivity étale-locally. Refining coverings by
finite disjoint unions of points to those just by points, it is equivalent to show that
for every L/K separable and every x ∈ L× there is a finite separable extension
M/L such that x ∈ M×n. Since K is perfect, so is every finite extension of K, so
hence so is L. In particular, we take M := L( n

√
x), and so the claim holds. □

Example 52. If K were not perfect, and char(K) | n then (2) can fail to be
exact! Consider K = Fp(T ), n = p, and x = T . Then the sequence being exact
would require that there is a finite separable extension L/K such that T ∈ L×p.
In other words, L ⊇ Fp(T )( p

√
T ) ⊇ Fp(T ). However this intermediate extension is

inseparable, so the total extension cannot be separable, so no such L exists. Hence
(2) is not exact on Xét.
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Lecture 6 (Jenny): Étale Cohomology III
We will now look at étale cohomology over a field, and discuss its relationship with
Galois cohomology. Denote by K a field, K its separable closure, GK := Gal(K/K).

Recall that X/Spec(K) is étale if and only if X =
⊔r
i=1 Spec(Li) = Spec(

∏r
i=1 Li)

with Li/K a finite separable field extension.

Definition 53. If F is a sheaf on Spec(K)ét then we define the abelian group

F(K) := lim→
L/K

fin. sep.

F(L).

Remark 54. Note that we could also have taken the limit over finite Galois exten-
sions, and this would have defined the same group.

Note that if L/K is finite Galois, and F is a sheaf on Spec(Két) then there is a
natural Galois action on F(L). Indeed, each σ ∈ GK induces a field automorphism
σ : L → L. Such a map is an isomorphism, so is étale, and so induces an isomor-
phism σ : F(L) → F(L). The fact that this is a group action is then immediate
from the fact that F takes compositions of maps to compositions of maps. More-
over, since σ : L → L is compatible with inclusion into larger Galois extensions,
the group actions on F(L) are compatible, and so F(K) is a (discrete continuous)
GK-module (continuity for the discrete topology follows from this module being a
limit of those acted on by finite quotients).

Theorem 55 (Étale cohomology over a field). We have
(i) The following is an equivalence of categories

{abelian sheaves on Spec(K)ét} → {(discrete) continuous GK modules}
F 7→ F(K),

where the global section functor on the left corresponds to the GK-fixed point
functor on the right.

(ii) An inverse equivalence is defined by

{(discrete) continuous GK modules} → {abelian sheaves on Spec(K)ét}
M 7→ FM ,

where for every finite separable extension L/K we define FM (L) := MGal(K/L).
(iii) As a consequence, for every (continuous discrete) GK-module M :

Hn
ét(X;FM ) ∼= Hn(GK ,M),

where the right hand side is continuous group cohomology (better known as
Galois cohomology).

Proof. (1) We consider the two functors

{(discrete) continuous GK modules} → {abelian sheaves on Spec(K)ét}
M 7→g FM ,

F(K)←f F
We want to show that

(i) f is well defined
(ii) g is well defined
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(iii) f ◦ g = Id
(iv) g ◦ f = Id

(i) is clear from our discussion above, in that we have already argued that F(K) is
a continuous discrete GK-module. For (ii) we need to check that we have a presheaf
and then that it is a sheaf.

Presheaf: It is clear that the natural inclusions MGL → MGF for every F/L
finite separable are the required contravariant pairs of morphisms.

Sheaf: Take an étale cover V =
⋃
i ϕi(Ui) in Xét, we seek exactness of

0 F(V )
∏
i F(Ui)

∏
i,j F(Ui ×V Uj) .

Note that V =
⊔r
i=1 Spec(Li), and refining the cover we may assume that

V = Spec(L), Ui = Spec(Li) for some finite separable extensions Li/L. More-
over, Spec(Li) ×Spec(L) Spec(Lj) = Spec(Li ⊗L Lj), which is a union of finitely
many compositums Li · Lj . Thus our sequence we need exactness of is

0 MGL
∏
iM

GLi

∏
i,jM

GLi·Lj .

Exactness of this is immediately clear: injectivity is immediate since m 7→ (m,m, . . . ,m);
the compatibility condition is then that if (mi)i ∈

∏
iM

GLi is such that mi = mj

for all i, j then it is in the image of m 7→ (m, . . . ,m) which is trivial.
We now prove (iii) We map G 7→ G(K) 7→ FG(K), and we would like to see that

we have obtained G back. We simply evaluate with the definitions:

FG(K)(L) = G(K)GL = G(L).

Finally we check (iv). Mapping a module M 7→ FM 7→ FM (K) we must check
that we get M back. However,

FM (K) = lim→
L/K

fin. sep

FM (L) = lim→
L/K

fin. sep

MGal(K/K) =
⋃
L/K

fin. sep

MGal(K/L),

M is a discrete continuous module, so the stabiliser of each point m ∈ M is open
in GK , and hence given by Gal(K/L) for some finite separable L/K. In particular,

M =
⋃
L/K

fin. sep

MGal(K/L),

as required. □

Lecture 6.5 (Jenny) Étale Cohomology III.5
Last time we established a bijection between abelian sheaves on Spec(K)ét and
(continuous, discrete) GK-modules, given as follows:

{abelian sheaves on Spec(K)ét} → {(discrete) continuous GK modules}
F 7→ F(K),

FM ←M.
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where for L/K finite separable FM (L) = MGal(Ks/L), and F(K) = lim→
L/K

fin. sep.

F(L).

Moreover, we claimed that for each module M ,

Hi
ét(Spec(K),FM ) ∼= Hi(GK ,M),

where the right hand side is Galois cohomology. It remains to prove this claim.
Note that to define étale cohomology we have to take an injective resolution of FM ,
take global sections and remove FM (X):

0→ I(0)(Spec(K))→ I(1)(Spec(K))→ . . . .

Meanwhile to definie Galois cohomology we take an injective resolution of M as a
GK-module, take GK-fixed points and remove M :

0→ IGK
0 → IGK

1 → . . . .

In particular, since the fixed point functor corresponds to the global sections func-
tor, the homologies are the same.

However, we have a problem. In general Hn(GK ,M) ̸= 0 for n > 0, and since
Spec(K) is a single point (so 0 dimensional), the Weil cohomology axioms would
force us to want Hn(Spec(K),F) = 0 for all n > 0. How do we resolve this? Take a
variety X/K, and consider the base change to XK = X×Spec(K) Spec(K), together
with the pullback F on K instead.

Definition 56. For a variety X/K, note that Hn
ét(XK ,Z/ℓnZ) is a Z/ℓnZ-module.

We then define
• Hn

ét(XK ,Zℓ) := lim←
n

Hn
ét(XK ,Z/ℓnZ) is a Zℓ-module.

• Hn
ét(XK ,Qℓ) := Hn

ét(XK ,Zℓ)⊗Zℓ
Qℓ is a Qℓ-vector space.

Each of these comes with a GK-functions.

Example 57. Take X/K to be a variety of finite type, and J to be the set of
connected components of XK . Then

H0(XK , A) = AJ ,

as an abelian group, for A ∈ {Z/ℓnZ,Zℓ,Qℓ}.

Theorem 58. Let X/K be a separated scheme of finite type, and ℓ ∤ char(K).
Then Hn(XK,Z/ℓnZ) are:

• finite for all n;
• invariant under extension from K to any larger algebraically closed field;
• 0 for n > 2 dim(X);
• 0 for n > dim(X) if X is affine;
• Hn

top(X(C),Z/ℓnZ) canonically for K = C.
Moreover they satisfy the properties of a Weil cohomology theory.

Lecture 7 (Sam): Étale Cohomology IV
Today we’ll start looking at H1

ét(X,Gm) and H2(X,Gm), and possibly also H1(X,Zℓ)
(time-permitting).

Recall that for an étale X-scheme U → X, we define Gm(U) := OU (U)×.
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Concerning H1
ét(X,Gm)

Weil divisors.

Hypothesis 59. Let X be an integral, noetherian, separated, regular in codimen-
sion 1 scheme ("not too singular").

Recall the following concepts associated to Weil divisors.
• Prime divisors: Z ⊂ X which are closed integral subschemes of codimension

1.
• Weil divisors: (finite) formal sums of prime divisors, we denote the group

of these by Div(X).
• Principal divisors: for f ∈ K(X)×, we write Div(f) =

∑
Z prime

vZ(f)Z ∈

Div(X). Here vZ(f) is the order of vanishing of f along Z (this uses
Hypothesis 59, as OX,ηZ is a DVR and vZ is the valuation).

• Divisor class group: Cl(X) := Div(X)/ ∼ where D ∼ D′ if D−D′ = Div(f)
for some f ∈ K(X)×.

Cartier Divisors. Now X is any scheme, and for U ⊂ X an open subscheme
we define S(U) to be the non-zero divisors in OX(U), and sheafify the functor
U 7→ S(U)−1OU (U). Then we get a sheaf K of ‘local rational functions’.

Our Cartier notion of divisors is then the following.

Definition 60. A Cartier divisor is a global section of K×/O×X . Formally: this is
an equivalence class of compatible pairs {(Ui, fi)}i where Ui is an open cover of X,
fi ∈ K(U)×, fi/fj ∈ OX(Ui ∩ Uj)

×.

We then have the notions
• The notion of principality for Cartier divisors is then the elements of K×.
• The Cartier divisor class group is the group of Cartier divisors modulo the

principal ones, denoted CaCl(X);
We add the hypothesis below.

Hypothesis 61. Let X be an integral, separated, noetherian, locally factorial (all
local rings are UFDs).

Proposition 62. Under Hypothesis 61, we have

CaCl(X) ∼= Cl(X).

Moreover this is attained through the map {(Ui, fi)}i 7→
∑
Z vZ(fi)Z for any fi

with Z ∩ Ui ̸= ∅.

Line Bundles. An OX -module is a sheaf F such that F(U) is always an OX(U)-
module. Such things are:

• locally free if ∀x ∈ X there is an open neighbourhood x ∈ U ⊆ X such that
F(U) ∼= OX(U)⊕n where n := rk(F) is constant on connected X.

• a line bundle if it is locally free of rank 1 (which makes it invertible under
⊗).

We now define
• Pic(X) is the set of isomorphism classes of line bundles.

Proposition 63. There is an injection CaCl(X) → Pic(X) fiven by D 7→ L(D),
where L(D)(Ui) =

〈
f−1i

〉
≤ K(Ui)×. Under Hypothesis 61, CaCl(X) ∼= Pic(X).
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They’re all the same thing – and it is Étale cohomology!

Proposition 64. Pic(X) ∼= H1
ét(X,Gm).

Proof. Take the long exact sequence of étale sheaves

1→ Gm,X → j∗Gm,k(X) →
⊕

D∈X(1)

codim. 1

(ιx)∗Z→ 1.

where j : Spec(K(X)) → X is the inclusion of the generic point, take cohomology
and apply Hilbert 90 to obtain the claim. □

Lecture 7.5 (Sam): Brauer Groups et al
Last time we were focussed on H1

ét(X,Gm) = Pic(X). This time we will look at
H2

ét(X,Gm), Hi(X,µℓn), and Hi
ét(X,Zℓ).

Brauer Groups

Azumaya Algebras.

Definition 65. Let K be a field, and let 0 ̸= A be a finite dimensional associative
K-algebra. We say that A is central if

Z(A) := {a ∈ A : ab = ba ∀b ∈ A} = K.

We say that A is simple if the only 2-sided ideals are 0 and A. We abbreviate the
phrase central simple algebra to CSA.

Example 66. For a, b ∈ K× we have the quaternion algebra QK(a, b) = ⟨1, i, j, k⟩K
where i2 = a, j2 = b, ij = k = −ji. For example, Hamiltons quaternions H =
QR(−1,−1).

Theorem 67. If A is a K-algebra then it is a CSA if and only if A ⊗K Ks
∼=

Mn(Ks) for some n

Definition 68. Replacing K by a commutative ring R, simplicity by separability
(multiplication has a section σ : A → A ⊗R A, σ(1)=‘separability idempotent’),
we arrive at the definition of an Azumaya algebra. We denote the set of these by
Az(R).

Definition 69. Say that A,B ∈ Az(R) are similar, denoted A ∼ B, if A ⊗R
Mn(R) ∼= B ⊗R Mm(R) for some n,m ≥ 1.

Definition 70. The Brauer group of R is BrAz(R) = (Az(R)/ ∼,⊗).

Definition 71. The cohomological Brauer group of a scheme X is H2
ét(X,Gm),

denoted Br(X).

Example 72. Let X = Spec(K). Then Br(K) = Br(Spec(K)) = H2(K,K×s ).
Take the long exact sequence of Galois cohomology

0→ K×s → GLn(Ks)→ PGLn(Ks)→ 0.

(note that we have to use a slightly unusual form of cohomology here, since GL and
PGL are not abelian and so don’t form modules as such, but there exist nonabelian
analogues of H1 and H2). The long exact sequence is

1→ K×s → GLn(K)→ PGLn(K)→ 1→ 1→ H1(K,PGLn(Ks))→ Br(K),
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where we have used Hilberts theorem 90 (and a result from Poonens book §1.3,1.5)
to see that H1(K,K×s ) = H1(K,GLn(Ks)) = 0. Thus we have an inclusion
H1(K,PGLn(Ks)) ⊆ Br(K).

We also have a map Azn(K) → H1(K,PGLn(Ks)) (the former is the set of
n2-dimensional algebras) given by

Azn(K) ∋ ϕ 7→ η ∈ H1(K,PGLn(Ks)),

where
ησ = ϕ−1(σϕ) ∈ Aut(Mn(Ks)) ∼= PGLn(Ks),

where the isomorphism follows from the Skolem–Noether theorem.
Then we in fact have an injection Azn(K)/ ∼= into Br(K) which induces an

isomorphism BrAz(K) ∼= Br(K) (see Serre’s local fields chapter X§5).

In general for a reasonable scheme

BrAz(X) ∼= H2
ét(X,Gm)tors = H2

ét(X,Gm) = Br(X),

where the formed is the group of Azumaya OX -algebras: sheaves F of OX -algebras
such that on every étale open U we have F(U) is an Azumaya algebra over OX(U).

Why do we care? The Brauer–Manin obstruction is given by a pairing

X(AK)× Br(X)→ Q/Z

where the left kernel is X(AK)Br ⊇ X(K). Moreover, this is closed. In particular, if
the Brauer group pairs trivially with nothing then we cannot possibly have rational
points! Also if it is a proper subset then we cannot have weak approximation (that
the rational points are dense in the adelic points).

Theorem 73. The following are facts.
• Br(Ks) = 0
• Br(R) = ⟨HR⟩ ∼= Z/2Z
• for a number field K, Br(Kv) ∼= Q/Z via the invariant map if v is a finite

place of K.

Coefficients in µℓn

For ℓ invertible on X, we have a short exact sequence on Xét:

(3) 1→ µℓn → Gm → Gm → 1

Assume that X/K is a projective variety, then

H0
ét(X,Gm) = OX(X)× = K×

H0
ét(X,µℓn) = K×[ℓn] = µℓn(K).

Taking the long exact sequence on (3) we get

1 µℓn(K) K× K×

H1
ét(X,µℓn) Pic(X) Pic(X)

H2
ét(X,µℓn) Br(X) Br(X).

×ℓn

×ℓn

×ℓn
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Thus H1
ét(XKs

, µℓn) = Pic(XKs
)[ℓn]. Assume that X = C is a curve of genus g

then we have a short exact sequence

0 Pic0(C) Pic(C) Z;

when C(K) ̸= ∅ then the degree map is surjective and this splits: Pic(C) ∼=
Pic0(C) ⊕ Z. Furthermore Pic0(CK) ∼= Jac(C)(K), multiplication by ℓn is sur-
jective and the kernel is (Z/ℓnZ)2g.

Also, Br(CK) = 0 by Tsen’s theorem, and we get

Hi
ét(CK , µℓn) =


µℓn(K) i = 0

(Z/ℓnZ)2g i = 1

Z/ℓnZ i = 2

0 i ≥ 3.

H1(EK ,Zℓ)

Let E/K be an elliptic curve, then recall

H1
ét(EK ,Zℓ) := lim←−

n

H1
ét(EK ,Z/ℓnZ).

We claim that this is dual to the Tate module Tℓ(E) = lim←−
n

E(K)[ℓn] as follows.

There is a pairing

H1
ét(EK ,Z/ℓnZ)×H1

ét(EK , µℓn) H2
ét(EK , µℓn) = µℓn(K).∪

The right hand term is E[ℓn] by our above discussion, so taking a limit we get
a pairing between H1(EK ,Zℓ) and Tℓ(E) which maps to Zℓ(1) = lim←−

n

µℓn(K). It

turns out that this pairing is perfect, and hence the duality follows.

Lecture 8 (Matt): Curves over Local Fields
Throughout, K is a local field with residue characteristic p ̸= ℓ. For all
such K, we write

• OK for the ring of integers in K;
• FK for the residue field of K;
• GK for the absolute Galois group;
• vK for the valuation on K.

Recap of Galois Theory

Let F/K be a finite Galois extension, and π be a uniformiser of F . Then the
inertia and wild inertia subgroups are:

I := {σ ∈ Gal(F/K) : σ(α) ≡ α mod π ∀α ∈ OF }
P :=

{
σ ∈ Gal(F/K) : σ(α) ≡ α mod π2 ∀α ∈ OF

}
.

These have some well known properties:
• I and P are normal subgroups of Gal(F/K);
• P is the Sylow p-subgroup of I;
• I/P is a cyclic group of order coprime to p;
• Gal(F/K)/I ∼= Gal(FF /FK) via a canonical isomorphism.
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• Gal(FF /FK) is cyclic and generated by (arithmetic) Frobenius φ : x 7→
x#FK .

A lift of the Frobenius element for the residue extension to Gal(F/K) is called an
arithmetic Frobenius element and denoted Frob.

Good Reduction

Let E/K be an elliptic curve with good reduction (meaning ∆E,min ∈ O×K).

Question 74. What is H1
ét(EK ,Qℓ) ∼= (TℓE ⊗Qℓ)∨, as a GK-representation?

More generally for a curve, we ask about:

H1
ét(CK ,Qℓ) ∼= H1

ét(Jac(C),Qℓ) ∼= (Tℓ(Jac(C))⊗Qℓ)∨ .

Lemma 75 (Silverman AEC §VII.3.1). Let E/K be an elliptic curve with good
reduction, then the reduction map induces an injective homomorphism for all n ≥ 0

E(K)[ℓn]→ Ẽ(FK).

Note that since good reduction is stable under base change, the inertia subgroup
acts trivially. This gives a GK-isomorphism TℓE ∼= TℓẼ, where the right hand
side is the Tate module of Ẽ/FK . In particular, since the absolute Galois group of
FK is procyclic and (topologically) generated by the Frobenius, it only remains to
understand the action of Frobenius.

Let α, β ∈ Qℓ be the eigenvalues of Frobenius acting on TℓE ⊗ Qℓ. Then by
results in previous lectures, the Weil conjectures in particular, we know that

αβ = #FK
α+ β = #FK + 1− Ẽ(FK).

This allows us to determine α, β completely from the structure of Ẽ(FK).

Grothendieck’s Monodromy Theorem

Definition 76. An ℓ-adic representation V of GK is:
• unramified (or has good reduction) if inertia acts trivially;
• semistable if inertia acts unipotently (meaning every eigenvalue is 1; equiv-

alently the semisimplification is unramified);
• potentially (∗) if V is (∗) as a GF -representation for some finite extension
F/K.

Definition 77. An ℓ-adic representation of GK is said to arise from geometry if
it is a subquotient of (a Tate twist of) Hn(XK ,Qℓ) for some smooth projective
variety X/K.

Definition 78. Tate twists are defined as follows: Qℓ(n) := (Tℓµ)
⊗n ⊗ Qℓ. For a

representation V , the n-th Tate twist is V (n) = V ⊗Qℓ(n).

Theorem 79 (Grothendieck’s ℓ-adic Monodromy Theorem). Every ℓ-adic repre-
sentation of GK that arises from geometry is potentially semistable.

Theorem 80 (Raynaud’s criterion). Let A/K be an abelian variety, and suppose
A[12] ⊆ A(K). Then Hn

ét(AK ,Qℓ) is semistable for all n.
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Remark 81. In fact, for abelian varieties

Hn
ét(AK ,Qℓ) =

n∧
H1

ét(AK ,Qℓ),

so in particular understanding H1
ét is enough to understand Hn

ét.

Tate Curves

Recall that for an elliptic curve E/C, the complex points form a torus: there is
some rank 2 lattice Λ = Z⊕ Zτ ⊂ C such that

E(C) ∼= C/Λ,

as complex Lie groups. We would like to mimic this for E/K but cannot do this
since K has no discrete subgroups. Instead note that the exponential map gives an
isomorphism

C/Λ ∼= C×/e2πiτZ.
This version carries over to K with some adjustments. Indeed K× does have
some interesting discrete subgroups: those of the form qZ for some q ∈ K× with
vK(q) ̸= 0. Moreover, the ‘modular functions’ (a special class of related functions)
converge so long as vK(q) > 0.

(Split) Multiplicative Reduction. Let vK(q) > 0 and consider the elliptic curve

Eq : y
2 + xy = x3 + a4(q)x+ a6(q),

where a4(q) = −5
∑
n≥1

n3qn

1−qn and a6(q) = − 1
12

∑
n≥1

(7n5+5n3)qn

1−qn .

Theorem 82 (Tate). The following hold.
(1) There is a (rigid analytic) GK-isomorphism

Eq(K) ∼= K
×
/qZ.

(2) Eq has split multiplicative reduction (in particular vK(j(E)) < 0).
(3) Every elliptic curve E with split multiplicative reduction over K is K-

isomorphic to Eq for some q.

In particular, understanding elliptic curves with (split) multiplicative reduction
is the same as looking at these Tate curves.

Question 83. What is TℓEq as a GK-mod?

The answer now is not too hard:

E[ℓn] = K
×
/qZ =

〈
ζℓn , q

1/ℓn
〉
.

As p ̸= ℓ, K(ζℓn)/K is unramified for all n ∈ Z and so inertia acts trivially on
that part of the Tate module. Moreover, Frob(ζℓn) = ζ#FK

ℓn , and so we completely
understand the action on the submodule obtained from ζℓn .

What about the rest? For simplicity, assume that ℓ ∤ v(q). Note that for an
inertia element σ, we have

σ(q1/ℓ
n

) = ζ
tℓ(σ)
ℓn q1/ℓ

n

,

for some tℓ(σ) ∈ Z/ℓnZ. Moreover, these tℓ(σ) are compatible as n grows. If
σ ∈ PK , the wild inertia, then tℓ(σ) = 0 since σ has order a power of #FK which
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is coprime to ℓ. Hence we can quotient out by wild inertia and only consider the
action of I/P . In fact, since ℓ ∤ v(q), tℓ(σ) is coprime to ℓ and so the action is

σ =

(
1 tℓ(σ)
0 1

)
Frob =

(
#FK 0
0 1

)
,

for some suitable choice of Frobenius element Frob. Now we are done, having
completely described H1

ét(Eq,Qℓ). Moreover, we can see that this representation is
semistable but not unramified.
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Lecture 9 (Bober): Zeta and L-functions
Let X/Z be a scheme of finite type. Then the zeta function is

ζ(X, s) :=
∏
x∈X

(
1− 1

N(x)s

−1)
,

where X is our notation for the set of (Zariski) closed points of X. Closed points
are precisely those for which #k(x) <∞, and we define this norm N(x) := #k(x).

Example 84 (‘Trivial’ example). ζ(Spec(Z), s) = ζ(s) is the Riemann zeta func-
tion, since the closed points are ⟨p⟩ for each prime p and the size of the residue field
is p. Similarly rings of integers of number fields lead to Dedekind zeta functions of
number fields.

Exercise 85. Make sense of this for elliptic curves.

Exercise 86. This is something we’ve seen before when X/Fq is a variety over a
finite field. In fact: ζ(X, s) = Z(X, q−s) where

Z(X,T ) =
∏
x∈X

1

1− T deg(x)
,

and one must check that Z(X,T ) = exp
(∑

n≥1
#X(Fqn )Tn

n

)
.

This gives us a natural product decomposition over the closed points of Spec(Z)
(i.e. the primes!)

ζ(X, s) =
∏
p

ζ(Xp, s),

which is the original definition of the Hasse-Weil zeta function attached to a variety.

Varieties

We now return to varieties and the Hasse-Weil zeta function, all over Q. Then
we could ‘define’

ζ(V, s) =
∏
p

Z(V/Fp, p−s).

This doesn’t really make sense: V/Q doesn’t immediately have a notion of reduction
mod p. We need to choose a model for V/Z, and then we can reduce mod p. Note
that this choice may change things at finitely many p!

At least we may say something like, up to finitely many factors,

ζ(V, s) =
∏

p ‘good’

Z(V/Fp, p−s).

Elliptic Curves

From lecture 2,

Z(E/Fp, T ) =
1− apT + pT 2

(1− T )(1− pT )
.

So

ζ(E, s) ≈
∏

some p

1

1− p−s

∏ 1

1− p1−s

∏(
1− app

−s + p−2s+1
)
≈ ζ(s)ζ(s− 1)

L(E, s)
.
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From lecture 3, Theorem 26, we know for a variety V/Fq of dimension d,

Z(V/Fq, T ) =
P1(T ) . . . P2d−1(T )

P0(T ) . . . P2d(T )
.

Where Pr(T ) = det (1− TFrob | Hr
ét(V,Qℓ)). For example, for an elliptic curve we

get the numerator having the factor corresponding to L(E, s), and the denominator
having factors corresponding to ζ(s) and ζ(s− 1).

Then we can define L(E, s) by replacing H1
ét(EFp

,Qℓ) with H1
ét(EQ,Qℓ)

Ip , and
taking the products of these.

For each ℓ we have a new Galois representation for H1
ét(EQ,Qℓ). As ℓ ̸= p

varies we obtain a compatible system of such representations, meaning that the
characteristic polynomials are all the same and so the L-function is independent of
ℓ. Generalising this we arrive at motives.

Appendix: Useful things

Definition 87. Given a diagram in a category

C

A B

the fibre product (if it exists) is an object denoted A×BC, equipped with morphisms
A×B C → A and A×B C → C such that every commutative square containing the
diagram factors through A×B C:

X

A×B C C

A B

∃
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