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Lecture 1: Canonical Heights

1 Introduction
Throughout this course, X/Q is a nice curve of genus g. Our goal will be to compute the rational
points on X, i.e. X(Q). But what do we mean by this? How does one “compute” a potentially
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infinite set? Well firstly, X(Q) = ∅ is one possibility, and we will always need to decide if this is
the case. Else we are in one of the following cases:

Genus g Structure of X(Q) “Computing” X(Q)
(g = 0) X(Q) ∼=Q P1

Q Find the isomorphism X → P1

(g = 1) X(Q) is a finitely generated abelian group (Mordell) Find generators of X(Q)
(g = 0) #X(Q) <∞ (Faltings) List the elements X(Q)

Today we focus on methods of deciding if X(Q) = ∅, then in the later lectures we will consider
the other cases. Note that there is a trivial obstruction that is worth mentioning, namely if K/Q
is a field extension then X(K) = ∅ ⇒ X(Q) = ∅. So if it is easy to prove that there are no K
rational points then we get the result for Q for free.

Definition 1.1. Our variety X is everywhere locally soluble (ELS) if

• X(R) 6= ∅,

• X(Qp) 6= ∅ for all primes p.

So by what we’ve said, X must be everywhere locally soluble if it has any Q-rational points.
How do we check if X is ELS? Well X(R) is relatively easy, we just need to find one point and
we can usually expect to be able to do this by hand. For Qp we have a useful lemma.

Lemma 1.2. If there is a smooth point P ∈ X(Fp), then P lifts to a point in X(Qp).

Proof. This is essentially just Hensels lemma, and is an exercise in John Cremona’s course.

Corollary 1.3. If p ∈
{
p > 4g2 | X has good reduction at p

}
then X(Qp) 6= ∅ for g ≥ 1.

Proof. Just use Lemma 1.2 and the Hasse-Weil bound.

What about the remaining primes? Well:
(g = 0) Without loss of generality we can assume that X is a smooth conic and we can

check if X is ELS via finitely many congruence conditions (this is an exercise!).
(g ≥ 1) Say X(Fp) 6= ∅ but all P ∈ X(Fp) are singular. Then we choose a model X /Zp

for XQp
, and for all P ∈ X(Fp):

• “zoom in” (blow up) at P to get a new model X ′,

• Check if X ′(Fp) = ∅ or X ′(Fp) has smooth points. In either of these cases
we are done,

• Else repeat with X replaced by X ′.

This is a finite process and checks if X is everywhere locally soluble.

Question 1. Is this sufficient to decide if X(Q) = ∅?

Theorem 1.4 (Legendre). If g = 0 then

X ELS ⇐⇒ X(Q) 6= ∅

Note that this is a special case, and the answer to our question is in general no. In fact, we
should expect for higher genus that there are no global points but ELS is very common.
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2 Descent and Covering Collections
Example 1. X : y2 = f(x) a hyperelliptic curve such that f = f1f2 for f1, f2 ∈ Z[x] which are
nonconstant and not both of odd degree (and coprime, but this is assured by defining a hyperelliptic
curve). We have an obvious unramified double cover:

P3 ⊃ Y :

{
y21 = f1(x)

y22 = f2(x)
→ X

π : (x, y1, y2) 7→ (x, y1y2)

as well as several “twists” of this, for d ∈ Z squarefree:

P3 ⊃ Yd :

{
dy21 = f1(x)

dy22 = f2(x)
→ X

πd : (x, y1, y2) 7→ (x, dy1y2)

Which give us commutative diagrams:

Yd
Q

∼ //

πd   

Y

π
��

X

We aim to use these kinds of twists to study rational points.

Lemma 2.1. X(Q) =
⋃
d∈S πd(Yd(Q)) where S is a finite set and is (theoretically) explicitly

computable.

Proof. If (x, y) ∈ X(Q) then there is a unique d ∈ Z≥0 squarefree such that{
f1(x) = dy21
f2(x) = dy2

with y1, y2 ∈ Q. The remainder is an exercise.

This extends more generally to nice curves X as follows,

Theorem 2.2. Let π : Y → X be an unramified geometrically Galois covering. Then there is a
set

Sel(π) ⊂ H1(GQ,AutQ(π))

which is finite and (in principle) explicitly computable such that

X(Q) =
⋃

α∈Sel(π)

πα(Yα(Q))

In fact,

Definition 2.3. The Selmer set of π is

Sel(π) =
{
α ∈ H1(GQ,AutQ) | Yα is ELS

}
.

Corollary 2.4. If Sel(n)(π) = ∅ then X(Q) = ∅.
Note that in the example, AutQ(π) = Z/2Z so that

H1(GQ,Z/2Z) = Q×/(Q×)2

for which squarefree d ∈ Z form a system of representatives.
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2.1 n-coverings
Definition 2.5. Suppose we are given ι : X → E = JacX which is defined over Q, for example
there are the Abel-Jacobi maps P 7→ [P ] − c for some c ∈ Pic1(X). Then for any π : Y → X
such that

Y
∼

Q
//

π

��

E

[n]

��
X

ι // E

commutes, we call π : Y → X an n-covering. For genus g ≥ 1 let ι : X → J = JacX be a Q
morphism. Then more generally for

Y

π

��

// V
∼

Q
//

��

J

[n]��
X

ι // J

We see that V is an n-covering of J and we call π : Y → X an n-covering of X.

Now, we have the definition of the n-Selmer set:

Definition 2.6. The n-Selmer set is

Sel(n)(X) = {ELS n-coverings of X}

Theorem 2.7. Sel(n)(X) is finite and explicitly computable (In principle).

In practice, we can often compute Sel(n)(X) when:

• (g = 1), X ∈ Sel(m)(Jac(X)/Q) and

– m = n = 2 (Cassels, Merriman-Siksek-Smart)
– m = n = 3 (Creatz)
– m = 4, n = 2 (Stamminger)
– mn ∈ {6, 12} (Fisher)

• (g ≥ 2) of X is hyperelliptic (Bruin-Stoll)

Lecture 2: Curves of Small Genus

3 Curves of Small Genus
Let X/Q be a nice curve, g ≤ 1 and X(Q) 6= ∅.

3.1 Genus 0
Say g = 0, WLOG X : Q = 0 is a conic with Q ∈ Z[X,Y, Z] quadric and disc(Q) 6= 0. Given
P0 ∈ X(Q) we have an isomorphism X ∼=Q P1

Q via projection from P0. (See Figure 1)
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Figure 1: The special fibre with multiplicative reduction.

3.1.1 Finding a Rational Point

We want to find P0 ∈ X(Q).
Idea: Replace Q by a “simpler” quadratic form Q′, then deduce rational solution from Q

from rational solution of Q′.

Theorem 3.1 (Simon’s Algorithm, (some goes back to Gauss)). Need everywhere locally soluble.

• Minimization: for all prime P | disc(Q), find Q′ such that P - disc(Q′). WLOG |disc(Q)| =
1.

• Reduction to the unit circle via indefinite quadratic form LLL.

Remark 3.2. There are alternatives to this due to Cremona-Rusin.

3.2 Genus 1
Say g = 1.

Example 2. Below are some examples:

• X : y2 = f(x) where f ∈ Z[x] with deg(f) = 4 and f squarefree.

• X ⊂ P2 a plane cubic,

• X = S1 ∩ S2 ⊂ P3 for Si quadratic surfaces.

e.g. via n-descent on JacX for n = 2, 3, 4.

To find P0 ∈ X(Q) search on X or on a cover of X. Covers hace “smaller” rational points
(this will be due to functoriality of heights, we will see this a little later). Given P0 ∈ X(Q), can
construct

X ∼=Q E : y2 = x3 + ax+ b

such that P0 7→ O = [0 : 1 : 0], e.g. via Riemann-Roch.
Goal: Find generators of E(Q) ∼= Zr ⊕ T for r ≥ 0 and #T <∞.

3.2.1 Generators of Torsion

Lemma 3.3. For p a good prime for E, we have that E(Qp)tors ⊂ Ẽ(Fp). Combining this for
several primes p we get an upper bound for #E(Q)tors. This extends to general number fields

For a lower bound: can just search, or use the theorem of Nagell-Lutz which says that rational
torsion which is not 2-torsion satisfies some division relations. Namely:

Theorem 3.4 (Nagell-Lutz). If (x, y) ∈ E(Q)tors\E[2], then x, y ∈ Z and y | ∆E.

Remark 3.5. These in no way guarantee that the upper and lower bounds agree, there is still
some searching and trickery to do.
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3.2.2 Rank

n-descent will give us an upper bound on r, but it might not be sharp because we do not know
X very well. A lower bound can be obtained via searching on E or via points on the n-covering.
See online notes for more detail.

Problem 1. Given Q1, . . . , Qr ∈ E(Q) independent modulo torsion, compute P1, . . . , Pr ∈ E(Q)
such that [P1], . . . , [Pr] ∈ E(Q)/ tors are linearly independent generators.

How do we even begin to answer such a question? Heights!

3.2.3 Heights

For P = (x0 : · · · : xN ) ∈ PN (Q), x0, . . . , xN ∈ Z and gcd(xi)i = 1 then we define the height

h(P ) = log max {|xi|∞} .

This definition does not extend in an obvious way to a number field, there is a whole theory
behind defining a height on general number fields, which specialises to this for Q.

The Naive height function on E(Q) is

h : E(Q)→ R≥0
(x, y) 7→ h(x)

O 7→ 0

Theorem 3.6. The naive height has some properties.

(1) # {P ∈ E(Q) | h(P ) ≤ B} <∞ for any B ∈ R,

(2) There is some C ∈ R such that h(2P ) − 4h(P ) ≤ C for all P ∈ E(Q). i.e. it is almost a
quadratic form,

(3) For P ∈ E(Q), the canonical height

ĥ(P ) := lim
n→∞

4−nh(2nP )

exists,

(4) ĥ is a quadratic form,

(5) h− ĥ is bounded.

(6) ĥ(p) = 0 if and only if P is torsion.

(7) #
{
P ∈ E(Q) | ĥ(P ) ≤ B

}
<∞ for any B ∈ R (follows from ((1)) and ((5))),

(8) ĥ extends to a positive definite quadratic form on E(Q)⊗ R ∼= Rr.

For P,Q ∈ E(Q) set the height pairing:

〈P,Q〉 =
ĥ(P +Q)− ĥ(P )− ĥ(Q)

2
.

If P1, . . . , Pr generate E(Q)/ tors then set

Reg(E/Q) := det (〈Pi, Pj〉)i,j
to be the Regulator of E/Q

All known algorithms to solve Problem 1 require essentially 2 ingredients, algorithms to:
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Figure 2: The special fibre with multiplicative reduction.

1. Compute ĥ(P ) for a given P ∈ E(Q).

2. enumerate
{
P ∈ E(Q) : ĥ(P ) ≤ B

}
for a given B ∈ R.

Remark 3.7. We know that{
P ∈ E(Q) : ĥ(P ) ≤ B

}
⊆ {P ∈ E(Q) : h(P ) ≤ B + β}

where
∣∣∣h− ĥ∣∣∣ ≤ β and the naive height h is somewhat easier to compute.

For (1) and (2) use

Theorem 3.8 (Néron). h− ĥ =
∑
p prime ψp + ψ∞ such that

ψv : E(Qv)→ R

satisfy

1. ψv is v-adically continuous and bounded,

2. For p prime, ψp factors through E(Qp)/E0(Qp).

3. ψp(Q)/ log p ∈ Q≥0 for Q ∈ E(Qp).

and ψ∞ is related to the Weierstrass sigma function, but we won’t write it down for lack of time.

Example 3. Suppose that E/Qp has multiplicative reduction, and vp(∆E) = n ≥ 3. You saw
last week that the Néron model has special fibre an n-gon (see Figure 2).

Let Γ0(Fp) = E0(Qp), the identity component. Then

ψp(Γi) =
i(n− i)

n
log p

Lecture 3: Chabauty’s Method

We begin with some leftovers from yesterday. The state of the art with heights means that
we can in fact do the following:

• Compute and bound h(P ) − ĥ(P ) =
∑
v ψv(P ) =

∑
n≥0 4−n−1Φv(2

nP ). We can do this
particularly well through an interpretation via Néron models.

• Compute ĥ(P ) without integer factorisation, so we don’t actually need to know which ψv
contribute to the sum!

• Extend the definitions of ĥ, h and Reg to abelian varieties.

– Compute ĥ for jacobians.
– Bound h− ĥ for jacobians of hyperelliptic curves.
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4 Chabauty’s Method
Here we leave the familiar relm of low genus curves, let X/Q be a nice curve of genus g ≥ 2 and
X(Q) 6= ∅. let p be a prime of good reduction for X.

Searching gives X(Q)known ⊆ X(Q) a set of known points, our goal is to be able to show that
in fact X(Q)known = X(Q). Fix a rational base point b ∈ X(Q), and recall the familiar map

X → J := JacX

P 7→ [P − b]

Idea: Cut out X(Q) in X(Qp).
We know that J(Qp) is a p-adic Lie group, there exists a continuous homomorphism

log : J(Qp)→ H0(JQp
,Ω1)∗ ∼= H0(XQp

,Ω1)∗

such that ker log = J(Qp)tors.

Lemma 4.1 (Chabauty). If r = rk(J(Q)) < g then there exists a nonzero holomorphic differ-
ential

ω0 ∈ H0(XQp ,Ω
1)\ {0}

such that
log(J(Q))(ω0) = 0.

call ω0 an annihilating differential.

Sketch proof: dimQp
log J(Q) = rk(Zp · log J(Q)) ≤ r < g = dimQp

H0(XQp
,Ω1)

Corollary 4.2. Let P,Q ∈ X(Q), then

log([P −Q])(ω0) = 0

Definition 4.3. For P,Q ∈ X(Qp), and ω ∈ H0(XQp ,Ω
1) then define∫ P

Q

ω := log([P −Q])(ω)

Definition 4.4. The residue disk of P ∈ X(Fp) is

DP :=
{
Q ∈ X(Qp) | Q = P

}
Lemma 4.5. Let P ∈ X(Qp), and ω ∈ H0(XQp ,Ω

1) such that ω ∈ H0(X,Ω1)\ {0}. Let t be a
uniformiser at P such that t is a uniformiser at P . Then

1. t : DP
∼= pZp where t 7→ p defines the map.

2. There is an expansion ω = ω(t)dt convergent on DP such that ω(t) ∈ Zp[[t]].

3. For Q ∈ DP , ∫ Q

P

ω =

∫ t(Q)

0

ω(t)dt

Lemma 4.6. Let ` ∈ Qp[[t]] such that the derivative w := `′ ∈ Zp[[t]]. Let ν := ordt=0 w. Then
if ν ≤ p− 2 we have

# {t ∈ pZp : `(t) = 0} ≤ ν + 1
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We prove this using Newton polygons, but we do not have the time to spend on this.
From now on we will assume that:

• r < g

• ω0 is an annihilating differential which is scaled so that ω0 ∈ H0(X,Ω1)\ {0}

Corollary 4.7. Let P ∈ X(Fp). If νP := ordt=0 ω0 ≤ p− 2 then

#DP ∩X(Q) ≤ νP + 1

Note that this actually proves Faltings/Mordells theorem/conjecture in this case, since there are
finitely many points over the residue field so finitely many residue disks and then the corollary
tells us that there are finitely many points in each residue disk.

Proof. WLOG there is a point P ∈ DP ∩ X(Q). Fix a uniformiser t at P as above. For all
Q ∈ DP ∩X(Q):

0 =

∫ Q

P

ω0

=

∫ t(Q)

0

w(t)dt w ∈ Zp[[t]]

= `(t(Q))

where ` ∈ Qp[[t]] satisfies the conditions of the lemma.

Theorem 4.8 (Coleman). Let r < g and p > 2g. Then

#X(Q) ≤ #X(Fp) + 2g − 2

Proof. For P ∈ X(Fp),

νP ≤
∑

Q∈X(Fp)

νQ

= deg Divω0

= 2g − 2 (Reimann Roch)
< p− 2

Now sum over all P ∈ X(Fp) and apply the corollary above.

Remark 4.9. There are improvements, in practice this bound is almost never sharp.

Corollary 4.10. If Reg and νP ≤ p− 2 for all P and #X(Q)known ∩DP = 1 + νP then

X(Q) = X(Q)known

Example 4.
X : X : y2 = x6 − 4x4 + 8x2 − 4

• r = 1 < 2 = g

• p = 3 - disc(X)
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staring at the equation for a little bit we see eight points:

X(Q)known = {∞±, (±1,±1)} .

Compute (will say more on Friday)∫ (1,1)

(−1,−1)

dx

y
= 0 6=

∫ (1,1)

(−1,−1)
x
dx

y

where the nonequality on the right tells us that [(1, 1)− (−1,−1)] is not torsion. Can thus take
an annihilating differential ω0 = dx

y .
For P = (1, 1), take uniformizer t = x − 1 (works because P is not a Weierstass point), on

DP ,

dx

y
= (1 + 6t− t2 + 4t3 + 11t4 + 6t5 + t6)−1/2dt

= (1− 3t+ 14t2 + . . . )dt

⇒ νP = 0

⇒ DP ∩X(Q)known = {(1, 1)}

The same holds for all (±1,±1). But ν∞± = 1
We thus know that X(Q)\X(Q)known ⊂ D∞+

∪D∞+
. Can compute the zeroes of

Q 7→
∫ Q

∞±

ω0

on D∞± . Show that zeroes 6=∞± are not rational.

Lecture 4: Mordell-Weil Sieve

Today we talk about yet another method for rational points, which rather than working with
complicated p-adic analysis we will work with information mod p. Given X/Q a nice curve
with genus g ≥ 2, let J = JacX and let X �

� ι // J/Q be an Abel-Jacobi map. Assume that
generators of J(Q) are given. We have a commutative diagram for p a prime of good reduction.

X(Q) �
� ι //

��

J(Q)

νp

��
X(Fp) �

� ιp // J(Fp)

(1)

ι(X(Q)) ⊂ ν−1p ιp(X(Fp)) =: Vp. Let S be some set of good primes, then

Theorem 4.11 (Scharaschkin). If
⋂
p∈S Vp = ∅ then X(Q) = ∅.

Is there any hope of this being true? Well there is a heuristic due to Poonen

Heuristic 1 (Poonen). If X(Q) = ∅ then there exists some S finite such that⋂
p∈S

Vp = ∅
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In fact this is related to the Brauer Manin obstruction, as was shown by Scharaschkin under
assumption that X is finite.

Remark 4.12. Can also:

• Work mod pn for n > 1,

• Use bad primes

Suppose that X(Q) 6= ∅, and we have X(Q)known ⊂ X(Q) we want to show equality. Fix
b ∈ X(Q)known and let ι(P ) = [P − b] be our fixed Abel-Jacobi map. Let p ∈ S and P ∈
X(Fp)\X(Q)known. If

ν−1p (ιp(P )) 6⊂
⋂
q∈S

Vq

then P 6∈ X(Q).
Note that, compared to the version of Chabauty we saw yesterday, this can actually detect

when the set of rational points is empty which Chabauty (as we saw it) cannot. More generally,
Chabauty uses ρ : X(Qp) → Qp where P 7→

∫ P
0
ω0 for ω0 an annihilating differential, so that

ρ(X(Q)) = 0. This means that the zeroes of ρ are precisely X(Q) ∪ Z ⊂ X(Qp), and one can
show that Z ∩ X(Q) = ∅ using congruence conditions and Mordell-Weil Sieve. We adapt the
commutative diagram (1) to the set of primes S to look at:

X(Q) �
� ι //

��

J(Q)

νS

��∏
p∈S X(Fp) �

� ιp // ∏
p∈S J(Fp)

(2)

Consider C : Q+NJ(Q) for N ≥ 2 and Q ∈ J(Q). If νS(C) ∩ im(ιS) then there are no rational
points on the curve mapping into C, i.e. ι(X(Q)) ∩ C = ∅. Extending (2) we look now at

X(Q)
� � ι //

��

J(Q)

νS

��

// J(Q)/NJ(Q)

βS,N

��∏
p∈S X(Fp) �

� ιp // ∏
p∈S J(Fp) // ∏

p∈S J(Fp)/NJ(Fp)

(3)

we label the composition along the bottom row as αS,N . We want gcd(N,#J(Fp)) to be big for
many p ∈ S.

Suppose for some reason you know that X(Q)
� � // J(Q)/NJ(Q) . This gives rise to a

method where we try to compute X(Q) as follows:

1. Select suitable S,

2. For all c ∈ J(Q)/NJ(Q), such that no P ∈ X(Q)known maps to c.

• By day, try to show that βS,N (c) 6∈ im(αS,N )

• By night, search for rational points P ∈ X(Q) mapping to C.
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Lemma 4.13. Let r < g and p a good prime, ω0 ∈ H0(XQp ,Ω
1) an annihilating differential

such that ω0 ∈ H0(X,Ω1)\ {0}. Assume that ω0(P ) 6= 0 for all P ∈ X(Fp). Let N ≥ 2 be such
that N is divisible by the exponent of #J(Fp). Then

X(Q)
� � // J(Q)/NJ(Q)

is an injection.

Proof. Let P,Q ∈ X(Q) be such that ι(P )−ι(Q) ∈ NJ(Q). Then ι(P ) = ι(Q) since N is divisible
by the exponent. But ι is an injection so P = Q. However, ω0(P ) 6= 0 then #DP ∩X(Q) ≤ 1 so
P = Q.

We get a practical method to compute X(Q) if r < g and if we can

• Compute
∫ Q
P
ω for P 6= Q. There is n | #J(Fp) such that n[Q − P ] =

∑
i[Qi − Pi] where

Qi = Pi for all i. Then ∫ Q

P

ω =
1

n

∑
i

∫ Qi

Pi

ω

however Pi, Qi ∈ X(Qp), so this may be difficult.

• Use Coleman integration, for which you need a lift of Frobenius to a certain p-adic co-
homology group. (See Balakrishnan-Bradshaw-Ketlaya for more details, or Balakrishnan-
Tuitman for an extension to greater generality)

• Show r < g (r is rank!) and find r independent points in J(Q) mod J(Q)tors to find ω0.
We can often work entirely in Sel(2)(J/Q) (See Poonen-Stoll or Stoll).

Example 5. This will not use anything we said so far, but do something much simpler.

X : y2 = x6 − 4x4 + 8x2 − 4

Chabauty did not work for this. Consider the quotient elliptic curve obtained via ϕ : (x, y) 7→
(x2, y):

E : y2 = x3 − 4x2 + 8x− 4

X(Q) ⊂ ϕ−1E(Q). But rk(E(Q)) = 1, so no use. However, the Jacobian of X is an abelian
variety of dimension 2 which will contain E, so there is another elliptic curve in this. Consider

E′ : y2 = −4x3 + 8x2 − 4x+ 1

obtained by (x, y) 7→ (x−2, yx−3). Show that E′(Q) = {∞, (0,±1), (1,±1)}. Thus X(Q) =
{∞±, (±1,±1)}.

Example 6. If J ∼ A× . . . such that rk(A/Q) = 0 we can use

X �
� //

  

J

��
A

If r = g and rk(NS(J)) > 1 (NS here means the Neŕon-Severi group) we can sometimes use
non-abelian Chabauty (Kim, Balakrishnan-Dogra,. . . ). Arizona winter school 2020 will be about
precisely this, and you are all heartily encouraged to attend.
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