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Lecture 1: The Birch and Swinnerton-Dyer Conjecture

The layout will be as follows:

1. The Birch and Swinnerton Dyer Conjecture,

2. Shaferevich-Tate group and the Cassels-Tate pairing,

3. Tamagawa Numbers,

4. Explicit Computations of Parities of Rank for some Abelian Varieties.

Notes are available on the webpage. We begin with the conjecture

1 BSD

1.1 Elliptic Curves over Q
Let E/Q be an elliptic curve, recall the Mordell(-Weil) theorem which tells us that E(Q) is a
finitely generated abelian group:

E(Q) = Zrk(E/Q) ⊕ E(Q)tors

Where E(Q)tors is a finite abelian group and rk(E/Q) ≥ 0 is an integer.
Problem: There is no provable method to compute rk(E/Q).
In the mid 1960’s, Birch and Swinnerton-Dyer (based on numberical experiments) conjectured

that rk(E/Q) can be computed by studying the L-function of E/Q.
Rationale: fix some prime p - ∆E not dividing the discriminant of E. Then the reduced

curve Ẽ/Fp is an elliptic curve, and we denote

Np := #Ẽ(Fp)

Main idea: a large rank over Q gives rise to a lot of Q-rational points on E/Q, which should
make Np large. Look at ∏

p<X

Np
p

Conjecture 1. There exists a constant CE depending only on E such that for some X > 0∏
p<X

Np
p
∼ CE(logX)rk(E/Q)

as X →∞.

Note: It is not convenient to study the value of
∏
p<X

Np

p , but for each p, the value of Np
is packaged up into the L-function of E/Q via Np = p+ 1− ap since

L(E/Q, s) =
∏
p

1

1− app−s + p−2s+1
.

If we discard all convergence problems, “evaluating” (ignoring all convergence problems for now)
at s = 1 gives

L(E/Q, 1)“ =′′
∏
p

p

Np
.

Thus L(E/Q, s) at s = 1 should contain information about rk(E/Q).
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Conjecture 2 (BSD 1). The L-function L(E/Q, s) extends to an entire function on C and

L(E/Q, 1) 6= 0 ⇐⇒ #E(Q) <∞

and moreover rk(E/Q) is the order of vanishing of L(E/Q, s) at s = 1.

In fact they went further!

Conjecture 3 (BSD 2).

lim
s→1

L(E/Q, s)
(s− 1)rk(E/Q)

=
|X(E/Q)|R(E/Q)ωR

∏
p cp

|E(Q)tors|2

where

• X(E/Q) is the Shaferevich-Tate group (see lecture 2!)

• R(E/Q) is the regulator of E/Q (see Steffens lecture in week 2)

• cp are the Tamagawa numbers at a prime p (see lecture 3)

• ωR is the real period of E/Q.

There are some great notes of Cremona, these are linked to on Maistrets webpage or available
on Cremonas.

Known Results: For E/Q, Gross-Zagier, Kolyvragin proved that

ords=1 L(E/Q, s) ≤ 1

then rk(E/Q) = ords=1 L(E/Q, s).
Skinner-Urban, Zhang probved that if rk(E/Q) ≤ 1 then rk(E/Q) = ords=1 L(E/Q, s)

1.2 Abelian Varieties over Number Fields
Let A/K be an abelian variety of dimension d.

Conjecture 4 (Generalised BSD). Let L-function of A/K extends to an entire functioon on C
and

1. rk(A/K) = ords=1 L(A/K, s)

2. lims→1
L(A/K,s)

(s−1)rk(A/K) =
2dr2 |X(A/K)|R(A/K)

∏
v|∞

∫
A(Kv)

|ω|v
∏

v-∞ cv

∣∣∣ ω
ω0

∣∣∣
v√

|dK |d|A(K)|tors|Ǎ(K)tors|
.

Where:

• r2 is the number of complex places of K.

• dK is the discriminant of K

• ω is a choice of non-zero exterior d-form.

• For a place v ∈MK , ω0
v is the Néron differential for A/Kv

• Ǎ/K is the dual variety of A/K.
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1.3 Consequences of BSD: The Parity Conjecture
Remark 1.1. Recall that if we write rkan(A/K) := ords=1 L(A/K, s) for the analytic rank, then
BSD claims that

rkan(A/K) = rk(A/K).

On the other hand, the completed L-function L∗(A/K, s) (adding some Gamma factors for the
infinite places) is conjectured to satisfy a functional equation:

L∗(A/K, s) = wL∗(A/K, 2− s)

where w ∈ {±1} . is called the sign of the functional equation.

• If w = 1, then ords=1 L(A/K, s) is even

• If w = −1, then ords=1 L(A/K, s) is odd

⇒ (−1)rkan A/K = w + BSD means that we should expect (−1)rkA/K = w. Lastly, the sign ω
is conjectured to be equal to the global root number W :=

∏
v wv where the wv are local root

numbers.

Conjecture 5 (Parity Conjecture).

(−1)rk(A/K) = W

Example 1. Consider E/Q : y2 + y = x3 + x2 − 7x+ 5.

∆E = −7 · 13,

ω∞ = −1,

ω7 = ω13 = −1,

W = (−1)3 = −1

⇒ rk(E/Q) is odd.

1.4 A Formula for the Parity of the Rank
Theorem 1.2 (BSD invariance under isogeny, Cassels ’65). Assume that X(E/Q) is finite, and
that ϕ : E → E′ is a Q-isogeny. Then

|X(E/Q)|R(E/Q)ωR
∏
p cp

|E(Q)tors|2
=
|X(E′/Q)|R(E′/Q)ωR

∏
p cp

|E′(Q)tors|2

Note that this does not assert that hte individual constants are unchanged under isogeny, in
fact these will change. It is astounding that they correct one another so that this expression is
unchanged.

Lemma 1.3 (Dokchitser-Dokchitser). Let ϕ : E/Q→ E′/Q be a Q-isogeny of degree d. Then

R(E/Q)

R(E′/Q)
= drk(E/Q) mod (Q×)2

Corollary 1.4. Let ` be a prime and E/Q admitting an isogeny of degree `. Assume that
X(E/Q) is finite. Then

(−1)rk(E/Q) = (−1)
ord`(

ωR
ω′R

∏
p

cp
c′p

)
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Proof. From Theorem 1.2:

R(E/Q)

R(E′/Q)
=
|E′(Q)tors|2 |X(E/Q)|ωR

∏
p cp

|E(Q)tors|2 |X(E′/Q)|ω′R
∏
p c
′
p

=
ω′R
∏
p c
′
p

ωR
∏
p cp

Lecture 2: Shaferevich-Tate Groups

2 Shaferevich-Tate Groups
Recall that Mordell-Weil tells us that E(Q) is a finitely generated abelian group, and BSD2 tells
us what the rank is.

2.1 Why Does X Appear in a Formula Directly Related to Rank?
For n ≥ 2 recall the short exact sequence

0 // E[n] // E
n // E // 0. (1)

Taking Galois cohomology we obtain the long exact sequence

0 // E(Q)[n] // E(Q) // E(Q) // H1(GQ, E[n]) // H1(GQ, E) (2)

and so it follows that we have an inclusion E(Q)/nE(Q) ⊂ H1(GQ, E[n]), relating the rank to
X(E/Q).

2.2 Definition of Principle Homogeneous Spaces (PHS)
Definition 2.1. A twist of E/Q is a smooth curve C ′/Q that is isomorphic to E over Q. If
C1/Q, C2/Q are twists of E/Q such that C1

∼=Q C2 then we say that C1 is equivalent to C2

modulo Q-isomorphism.

Theorem 2.2. The twists of E/Q, up to Q-isomorphism, are in 1-1 correspondence with the
elements of H1(GQ, Isom(E)), where Isom(E) denotes the group of Q-isomorphisms of E to itself.

Remark 2.3. Isom(E) contains Aut(E), the group of automorphisms which send the identity
point OE to itself, and the translations τp : E → E sending τP (Q) = P +Q.

Sketch proof of Theorem 2.2.

{C ′/Q, φ : C ′ → E} {ξ : GQ → Isom(E)}
[C ′, φ]⇒ σ 7→ φσφ−1

Check that this is indeed a cocycle. Note that this is really just measuring how far away the
isomorphism is from being a Q-isomorphism.
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View E(Q) as the set of translations in Isom(E) via E(Q) 3 P ↔ τP : Q 7→ P +Q.

Definition 2.4 (2.5). A Principle Homogeneous Space (PHS) for E/Q is a smooth curve
C/K with a simply transitive algebraic group action of E on C defined over Q. i.e. there is a
morphism µ : C × E → C defined over Q such that

• µ(p,OE) = P for all p ∈ C.

• µ(µ(p, P ), Q) = µ(p, P +Q) for all p ∈ C and P,Q ∈ E.

• For all p, q ∈ C there exists a unique P ∈ E such that µ(p, P ) = q.

This las axiom tells us that there is a subtraction map on C

C × C → E

p, q 7→ P

where P is the unique above.

From now on we write p + P := µ(p, P ).

Proposition 2.5 (2.7). Let C/Q be a PHS for E/Q. Fix a point p0 ∈ C. Then the map

θ : E → C

P 7→ p0 + P

is a Q(p0)-isomorphism.

Definition 2.6. Two PHS’s C/Q, C ′/Q for E/Q are equivalent if there is a Q-isomorphism
θ : C → C ′ that is compatible with the action of E on C and C ′. i.e.

C
φ //

θ
��

E

τP

��
C ′

φ′ // E

commutes for all P ∈ E(Q).

Proposition 2.7. Let C/Q be a PHS for E/Q. Then C/Q is the trivial class iff C(Q) is not
empty.

Proof. This is Proposition 2.5 with p0 ∈ C(Q), as we have a Q-isomorphism with this point. It
is worth checking the definition of the map from the proof of Theorem 2.2 to ensure that the
trivial class corresponds to E itself.

Definition 2.8 (Weil-Châtelet Group). the Weil-Chatelet group of E/Q is WC(E/Q), which is
the equivalence classes of PHS. (note that it should not be clear that has any group structure just
yet)

Theorem 2.9 (2.11). There is a natural bijection between WC(E/Q) and H1(GQ, E), defined
by

{C/Q} 7→ {σ 7→ pσ0 − p0}

for a fixed p0 ∈ C.
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Now recall the sequence (2) from the beginning of the lecture. Truncating this gives the exact
sequence

0 // E(Q)/nE(Q) // H1(GQ, E[n]) // H1(GQ, E)[n] // 0

We know we can replace H1(GQ, E) by the Weil-Chatelet group WC(E/Q) by Theorem 2.9, and
then consider the local sequences to obtain the diagram

0 // E(Q)/nE(Q) //

��

H1(GQ, E[n]) //

res

��

α

))

WC(E/Q)[n] //

res

��

0

0 // ∏
v E(Qv)/nE(Qv) // ∏

vH
1(GQv

, E[n]) // ∏
v WC(E/Qv)[n] // 0

(3)

Definition 2.10. The n-Selmer group of E/Q is defined by

Sel(n)(E/Q) = ker(α) = ker

(
H1(GQ, E[n])→

∏
v

WC(E/Qv)

)

The Shaferevich-Tate group is the subgroup of WC(E/Q) defined by

X(E/Q) = ker

(
WC(E/Q)→

∏
v

WC(E/Qv)

)

We should really think of elements of X(E/Q) in this way, as genus 1 curves which have
points everywhere locally but not globally.

Remark 2.11. We have a short exact sequence arising from (3) which relates rank, selmer
groups and the torsion in X(E/Q).

0 // E(Q)/nE(Q) // Sel(n)(E/Q) //X(E/Q)[n] // 0

2.3 X(E/Q) and p∞ Selmer Rank
Proposition 2.12. If the Weil-Châtelet group and X(E/Q) are torsion then

X(E/Q) =
⊕
p

Xp∞(E/Q)

where Xp∞(E/Q) denotes the p-primary part of X(E/Q), the subgroup of elements whose order
is a power of p.

Moreover for n ≥ 2, if X(E/Q)[n] is finite then

Xp∞(E/Q) ∼= (Qp/Zp)δp ⊕ Tp

where δp ∈ Z≥0 and Tp is a finite abelian group. The subgroup
⊕

p(Qp/Zp)δp is called the
infinitely divisible subgroup, and we denote it Xdiv(E/Q).

Remark 2.13. Note that X(E/Q) finite will mean that δp = 0 for all p.
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Definition 2.14. Fix a prime p, define the p∞-Selmer group as the direct limit

lim
→

Sel(p
n)(E/Q)

and the p∞-Selmer rank, denoted rkp(E/Q) is

rkp(E/Q) = rk(E/Q) + δp.

Lecture 3: The Cassels-Tate Pairing

2.4 Cassels-Tate Pairing
Let A/K be an abelian variety over a number field, and denote A∨/K its dual.

Proposition 2.15. There exists a bilinear pairing

Γ : X(A/K)×X(A∨/K)→ Q/Z

called the Cassels-Tate pairing, whose kernel on both sides is XDiv. In particular, if X is
finite then this pairing is nondegenerate.

Remark 2.16. Consider a principally polarized abelian variety A/K and λ : A → A∨ be a
principal polarisation. We define

〈,〉λ : X(A/K)×X(A/K)

to be 〈a, a′〉λ = Γ(a, λ(a′)).

2.4.1 Definition of the Cassels-Tate Pairing

Take a ∈X(A/K) and denote by X/K the associated locally trivial PHS for A/K. Denote by
Ksep the seperable closure of the field K, and Ksep(X) the function field of X ×K Ksep.

The following exact sequence

0 // Ksep,× // Ksep(X)× // Ksep(X)×

Ksep,×
// 0 (4)

yields

Br(K)

res

��

// H2(GK ,K
sep(X)×)

res

��

// H2(GK ,
Ksep(X)×

Ksep,× )

res

��

// 0

0 // ∏
v Br(Kv) // ∏

vH
2(GKv

,Ksep
v (X)×) // ∏

vH
2(GKv

,
Ksep

v (X)×

Ksep,×
v

)

(5)

On the other hand, we have

0 // K
sep
v (X)×

Ksep,×
v

// Div0(X ×K Ksep) // Pic0(X ×K Ksep) // 0 (6)
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Which yields

H1(K,Div0(X ×K Ksep)) // H1(K,Pic0(X ×K Ksep)) // H2(K,
Ksep

v (X)×

Ksep,×
v

) // . . .

(7)
Now, over Ksep, A×KKsep ∼= X×KKsep and hence Pic0(A×KKsep) ∼= Pic0(X×kKsep). Hence
one gets a map

H1(K,A∨) H1(K,Pic0(A×K Ksep)) // H2(K,
Ksep

v (X)×

Ksep,×
v

)

Let a′ ∈X(A∨/K) = H1(K,A∨) and denote by b′ its image in H2(K,
Ksep

v (X)×

Ksep,×
v

). So in diagram
(5) we send b′ in the top right to f ′ some lift, restrict it to get res(f ′).

Claim: res(f ′) is in the image of the local Brauer groups and so comes uniquely from some
(cv) ∈

∏
v Br(Kv).

Proof. We have the diagram

H1(K,Pic0(A×K Ksep)) //

��

H2(K,
Ksep

v (X)×

Ksep,×
v

)

��∏
vH

1(Kv,Pic0(A×K Ksep)) // ∏
vH

2(Kv,
Ksep(X)×

Ksep,×
v

)

and a′ is in the kernel of the left vertical.

Note that it seems like there is no a dependence on this Cassels-Tate pairing but this is not true!
In fact, note that X and the whole of diagram (5)is dependent solely on a.

Definition 2.17.
〈a, a′〉 =

∑
v

invv(cv) ∈ Q/Z

where inv is the local invariant map from class field theory.

Exercise 1. Prove that if λ comes from a rational divisor then the above pairing is alternating.

What is a rational divisor? It is those divisors which are Galois invariant for GK . Note that this
does not just mean sums of K-rational points on curves, we can stick enough evenly coefficiented
Galois conjugates.

Proposition 2.18. Let A/K be a principally polarised abelian variety with principal polarisation
λ. Assume that X(A/K) is finite. If λ is given by a rational divisor then the order #X(A/K)
is a square.

Proof. By the above exercis, if λ is rational then the pairing is alternating. If moreover X(A/K)
is finite then the pairing is nondegenerate. The result then follows from the fact that a finite
abelian group with a nondegenerate alternating pairing must square order.

Definition 2.19. Let C be a curve of genus g over a local field Kv, then we say that C is
deficient at v if it has no Kv-rational divisor of degree g − 1.
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Proposition 2.20. Let J/K be the Jacobian of a smooth curve C/K and assume that X(C/K)
is finite. Then #X(J/K) is square if C/K has an even number of deficient places, and
#X(J.K) ≡ 2 mod squares if C/K has an odd number of deficient places.

Proposition 2.21. Let K/Qp be a finite extension and C/K be a hyperelliptic curve of genus
g. Denote by k the residue field of K, then TFAE:

1. C is definicient over K

2. C has even genus and has no rational point over any odd degree extension of K.

3. C has even genus and every component of the special fibre of its minimal regular model has
either even multiplicity or a GK-orbit of even length.

If you wanted, at this point you could go away and use the cluster pictures from Adam Morgans
course to construct curves with Jacobians with order twice a square.

3 Tamagawa Numbers
Let K/Qp be a fintie extension for some prime p. Let A/K be an abelian variety, and recall
that the group A(K)/A◦(K) is finite, where A◦(K) is the set of points reducing to the connected
component of the identity of the Néron model of A/K.

Definition 3.1. The Tamagawa Number

c(A/K) = #
A(K)

A◦(K)

Alternatively, this is also

c(A/K) = #
Ã

Ã ◦(k)Gal(k/k)

where k denotes the residue field of K and Ã , Ã ◦ denote the reduction of the abelian variety and
the reduction of the identity component of the Néron model respectively.

Lecture 4: Tamagawa Numbers and Explicit Computations

3.1 Elliptic Curves
Let K/Qp be a fininte extension. In this case we need to compute #E(K)/E0(k), where E0(K)
can be defined by

0 // E1(K) // E0(K)
π // Ẽns(k) // 0

where π is the canonical reduction map. Note that the surjectivity of the reduction map π
depends crucially on the fact that we can use Hensels lemma to lift nonsingular points.

Example 2 (3.2). Let p > 3,

1) Consider E/Zp : y2 = x(x−1)(x−2). Reducing mod p gives Ẽ/Fp : ỹ2 = x̃(x̃−1)(x̃−2). In
this case, Ẽns(Fp) = Ẽ(Fp) so that E0(Qp) = E(Qp) and the Tamagawa number c(E/Qp).
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2) Consider E/Zp : y2 = (x + 1)(x − p2)(x + p2). Reducing mod p we get a nodal curve
ỹ2 = x̃2(x̃+ 1). Here

Ẽns(Fp) = Ẽ(Fp)\ {(0, 0)}

Hensels lemma is inconclusive at (0, 0). From this model it is not possible to compute
#E(Qp)/E0(Qp). We need a model which guarantees that singular points will NOT lift to
Qp points.

Proposition 3.2. Let C /Zp be a proper model for E. If C is regular then

E(Qp) = C (Zp) = C ◦(Zp)

where C ◦ = C \ {singular points}

This is telling us that if we know regular models of elliptic curves, then we can compute Tamagawa
numbers! See the exercises for today.

Example 3. Continuing with E/Zp : y2 = (x+ 1)(x− p2)(x+ p2), construct the special fibre of
a minimal regular model for E/Zp. (you can do this using clusters as in Adam Morgan’s course)

Figure 1: The special fibre of the minimal model of E/Zp

1. Assume that Γ1,Γ2,Γ3,Γ4 are defined over Fp (split multiplicative reduction). Then we
just remove these 4 singular points and get

#E(Qp)/E0(Qp) = 4

2. Some components are not defined over Fp. In this case the ony way for it to happen is
Γ2 = Frob(Γ3) and Γ3 = Frob(Γ2) and Γ4,Γ1/Fp (non-split multiplicative reduction).

#E(Qp)/E0(Qp) = 2

3.2 Jacobians of Curves
K/Qp, OK its ring of integers, k, k the residue field and its algebraic closure. We need to compute
#J(K)/J0(K).

We want to compute Tamagawa numbers for Jacobians from a minimal regular model of their
underlying curve.

Theorem 3.3 (3.5). let C/K be a semistable curve, C /OK a minimal regular model for this
and denote by J /OK the Néron model of the Jacobian J .

Consider C = C ×OK
k, and let I = {Γ1, . . . ,Γn} denote the irreducible components of C

and let di denote their multiplicities.
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Define the map

α : ZI → ZI

Γi 7→
∑
j

(Γi · Γj)Γj

where Γi ·Γj is the intersection number of the components Γi and Γj, and extend this Z-linearly.
Define the map

β : ZI → Z
Γi 7→ di

and again extend Z-linearly. Then im(α) ⊂ ker(β) and J /J ◦(k) ∼= ker(β)/ im(α) and this is
equivariant for the action of Gal(k/k).

Here note that as we are assuming semistable, the components are all multiplicity 1.

Example 4. Let p ≥ 3 be an odd prime and consider C/Qp the following hyperelliptic curve:

y2 = (x− 2)((x− 1)2 − p2)(x2 − p2)

Again we can use the cluster picture to prove that this is semistable. The root set is R =
{2, p,−p, p+ 1,−p+ 1}

Figure 2: The cluster diagram for E/Zp

We have I = {ΓR,Γt1 ,Γt2} and all components have multiplicity 1. Now,

kerβ = {nRΓR + nt1Γt1 + nt2Γt2 | nR + nt1 + nt2 = 0}

(which you can verify for yourselves) and

imα = {[ΓR], [Γt1 ], [Γt2 ]}

where

[ΓR] = −4ΓR + 2Γt1 + 2Γt2

[Γt1 ] = 2ΓR − 2Γt1

[Γt2 ] = 2ΓR − 2Γt2

So we see that kerβ/ imα = 〈Γt1 ,Γt2 | 2Γt1 = 2Γt2 = 0〉 and so is Z/2Z⊕ Z/2Z. Hence

#J /J ◦(k)Gal(k/k) = 4
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4 Explicit Computations of Parity of Rank

4.1 Parity of rkp(A/K)

Recall that for a fixed prime p we defined rkp(A/K) = rk(A/K) + δp. Let K be a number field
and let φ : A/K → B/K be an isogeny of abelian varieties. Recall that φφ∨, φ∨φ = [p] and recall
further that

Q(φ) = |coker(φ : A(K)/A(K)tors → B(K)/B(K)tors)| × |ker(φ : Xdiv(A/K)→Xdiv(B/K))|

Proposition 4.1. Fix nonzero global exterior forms ωA, ωB for A,B respectively.

Q(φ∨)

Q(φ)
=
|B(K)tors| |B∨(K)tors|ΩA

∏
v-∞ c(A/Kv)

∣∣∣ ωA

ω◦A,v

∣∣∣ |X0(A)[p∞]|

|A(K)tors| |A∨(K)tors|ΩB
∏
v-∞ c(B/Kv)

∣∣∣ ωB

ω◦B,v

∣∣∣ |X0(B)[p∞]|

where X0 = X/Xdiv.

Recall that we showed Q(φ∨)
φ = prkp(A/K) mod (Q×)2

Let C/K be a curve of genus 2 (The reason for genus 2 is we want an isogeny on its Jacobian,
where we have the Richolet isogeny (the generalisation of 2-isogeny for elliptic curves)) such
that its Jacobian admits a Richolet isogeny. Denote Ĵ , Ĉ the isogenous Jacobian and underlying
curve. Proposition 4.1 and Exercise 2.25 from the exercise sheet gives

(−1)rk2(J/K) = −1ord2(†)

where

† =
ΩJ
∏
v-2∞ c(J/Kv)

∏
v|2 c(J/Kv)

∣∣∣ ωJ

ω◦J,v

∣∣∣
v
|X0(J)[2∞]|

ΩĴ
∏
v-2∞ c(Ĵ/Kv)

∏
v|2 c(Ĵ/Kv)

∣∣∣∣ ωĴ

ω◦
Ĵ,v

∣∣∣∣
v

∣∣∣X0(Ĵ)[2∞]
∣∣∣ .
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