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Lecture 1: Introduction to Curves and Jacobians

Let K be a field

1 Some Words
An algebraic variety over K is a finite type separated K-scheme. By a curve we will mean
an algebraic variety all of whose irreducible components have dimension 1. When we say “nice”
about an algebraic variety we mean smooth, projective, geometrically integral. For nice algebraic
varieties linear equivalence of divisors is the same as looking at line bundles.

2 Examples of Nice Curves
• The projective line: P1

K = Proj(K[X,Y ]), which over C is a Reimann sphere with genus 0.

• Elliptic curves: nice genus 1 curves with a specified K point. Over C these are tori and
are isomorphic (as Lie groups) to C/Λ for a lattice Λ. If char(K) 6= 2, 3 then these have a
Weierstrass equation

E : y2 = x3 + ax+ b

such that ∆E = −16(4a3 + 27b2) 6= 0. Note that this is affine and we really want the
projective closure

y2z = x3 + axz2 + bz3 ⊂ P2
K

which have one additional point at infinite, [0 : 1 : 0] which is taken always to correspond
to our fixed point O.

• Hyperelliptic curves: nice curve C of genus ≥ 2 with degree 2 (finite seperable) morphism
C → P1

K . We can always find a Weierstrass equation

C : y2 = f(x)

with f ∈ K[x] squarefree with deg(f) ∈ {2g + 1, 2g + 2} for g the genus of C, and such
that

C → P1
K

is the projection (x, y) 7→ x. Note again that this is affine and we really mean the nice
curve given by glueing the two affine charts

U1 : y2 = f(x)

U2 : z2 = w2g+2f

(
1

w

)
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glued along {x 6= 0} and {w 6= 0} along the isomorphism x = 1
w and y = z

wg+1 . We call
the points of U2\U1 the points at infinity, and note that this consists of 1 (resp 2) points
if deg(f) is odd (resp. even).

Remark 2.1. If K = K, we’ve so far met all nice curves of genus 0, 1, 2 and to cover genus 3
we also need smooth plane quartics

f(x, y, z) = 0 ⊂ P1
K

for f degree 4 homomgeneous.

3 Abelian Varieties

3.1 Intro
E/K an elliptic curve with K rational point O. Then E(K) has a natural group structure with
identity O. One way to see this is the usual lines construction. Another way is to take the map

E(K)→ Pic0(E/K)

P 7→ (P )− (O)

which is a bijection by Reimann Roch and then we can pull back the group structure on
Pic0(E/K) to here. In fact these give the same group structure and this is a fun exercise.

Definition 3.1. An Abelian variety over K is a nice group variety (i.e. a nice variety with
a group structure given by morphisms).

Remark 3.2. This is certainly not the usual way to define abelian varieties, one usually starts
with somewhat weaker hypotheses and actually shows that these varieties are nice. Further we
have the following properties:

• The group structure on these is always abelian.

• 1 dimensional abelian varieties are elliptic curves.

• Over C any abelian variety A is (as a complex Lie group) isomorphic to Cg/Λ for g =
dim(A) and Λ ⊂ Cg a lattice.

3.2 Torsion Points on Abelian Varieties
A/K an abelian variety of dimension g, then for any n ≥ 1 coprime to char(K) we have

A[n] = A(K)[n] ∼= (Z/nZ)2g

in fact A[n] ⊆ A(Ksep).

Definition 3.3 (Tate Module). let ` - char(K) be a prime then the `-adic tate module is

T`(A) = lim
←n

A[`n]

We have a natural action of GK = Gal(Ksep/K) on A[`n] making T`(A) into a GK-module.

In fact, GK acts Q`-linearly on V`(A) = T`(A) ⊗Z`
Q`, and we call this the `-adic Galois

representation associated to A.
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4 Abelian Varieties over Number Fields
Let K be a number field, A/K an abelian variety.

Theorem 4.1 (Mordell-Weil). A(K) is a finitely generated abelian group,

A(K) ∼= Zr ⊕∆

for ∆ a finite abelian group. We call r ≥ 0 the rank of the abelian variety and sometimes write
rk(A/K).

Conjecturally, the rank is related to another important invariant of A/K, namely its L-
function L(A/K, s). For each non-archimedean place v ∈MK write

Iv = Inertia group at v kv = Residue field at v
Frobv = (arithmetic) Frobenius at v qv = #kv

Definition 4.2. For each v pick a prime ` - v. Define the local L-polynomial by

Lv(A, T ) = det(1− Frob−1
v T | (V`(A)∗)Iv )

where V`(A)∗ is the dual of V`(A).

It is a fact that Lv(A, T ) ∈ Z[T ] and is independent of our choice of `. This follows from the
Weil conjectures and the existence of the Neròn model.

Example 1. E/K an elliptic curve, then

Lv(E, T ) =


1 E Additive at v
1− T E Split multiplicative at v
1 + T E nonsplit multiplicative at v
1− avT + qvT

2 E good at v

where av = qv + 1−#E(kv).

Definition 4.3. The L-function of A/K is the complex function

L(A/K, s) =
∏

v∈MK
non−arch

Lv(A, q−sv )−1

This converges for Re(s) > 3
2 and conjecturally has analytic continuation to all of C. There

is much recent work in this direction, over Q we have Wiles work and some more recent things
are being done for totally real number fields.

5 Jacobians
Let K be a field. Then

Definition 5.1 (/Theorem). Let C be a nice curve of genus g, then there exists some g di-
mensional abelian variety Jac(C) the Jacobian such that for any field extension L/K where
C(L) 6= ∅ we have Jac(C)(L) = Pic0(C/L) functorially.
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In general even if C(L) = ∅ we have Jac(C)(L) = Pic0(C/Ksep)GK .

Example 2. • P1
K has genus 0 so its Jacobain is 0 as is reflected in the isomorphism

Pic(P1
K)

deg // Z

• E/K an elliptic curve. Then E is its own Jacobian as is reflected in the isomorphism

E(K)→ Pic0(E/K)

from earlier.
One thing we will do in this course is try to understand jacobians in terms of the underlying

curve so that we can really write things down by hand.

6 Duality for Abelian Varieties
Definition 6.1 (/Theorem). Let A/K be an abelian variety, then there is another abelian variety
Ǎ/K called the dual of A with dim(Ǎ) = dim(A) and such that for any L/K we have

Ǎ(L) = Pic0(A/L)

(the line bundles which are algebraically equivalent to 0.)

In fact, A, Ǎ are related by certain maps called polarisations. Let L be a line bundle on A,
and x ∈ A(K). Then consider

x 7→ τ∗xL ⊗ L−1 ∈ Pic0(A/K)

where τx is translation by x and in this way we get a homomorphism φL : A→ Ǎ.

Definition 6.2. A polarisation is a homomorphism φ : A→ Ǎ such that over K, φ = φL for
some line bundle L. A polarisation which is an isomorphism is called a principle polarisation.

Proposition 6.3. C/K a nice curve, with genus g. Let J = Jac(C). Then J is (canonically)
principally polarised.

Proof. First assume C(K) 6= ∅ then fix some O ∈ C(K). For any n we have the abel-jacobi
maps

Cn → Jac(C)

(P1, . . . , Pn) 7→

[
n∑

i=1

(Pi)− n(O)

]
For n = g−1, the image is a divisor on Jac(C) called the Theta divisor θ, and the polarisation
φ is an isomorphism J → J̌ independent of O. In general do this over the same extension of
K.

Lecture 2: Models of Curves

This will be the “theory of how to reduce things modulo primes”.
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7 Motivation: Elliptic Curves
Let p be a prime and say p 6= 2, 3, E/Qp : y2 = x3 + ax + b for a, b ∈ Qp. After a change of
variables (x, y) 7→ (u2x, u3y) for u ∈ Q×p we may assume that a, b ∈ Zp and that ordp(∆E) is
minimal amongst all such equations. We call this a minimal Weierstrass equation for E. The
reduction mod p is Ẽ/Fp : y2 = x3 + ax+ b, which is well defined up to Fp isomorphism and we
have 3 possible cases:

• Ẽ/Fp an elliptic curve ⇐⇒ ordp(∆E) = 0, we call this case good reduction.

• Ẽ/Fp has a node ⇐⇒ x3 + ax + b has a root of multiplicity exactly 2, we call this case
multiplicative reduction

• Ẽ/Fp has a cusp ⇐⇒ x3 + ax + b has a root of multiplicity exactly 3, we call this case
additive reduction

Remark 7.1. In fact, we know things over extensions.

• If E has good/multiplicative reduction over Qp then it also does over any finite extension
K/Qp.

• If E has additive reduction then there is some finite extension K/Qp over which E has
either multiplicative or good reduction. Thus we sometimes refer to this as semistable
reduction

In all cases, the set Ẽns(Fp) of nonsingular points has a natural group structure over Fp.

8 Models of Curves
Let K/Qp be a finite extension, and let OK be the ring of integers, πK a choice of uniformizer
and k the residue field.

Definition 8.1. A model of C is a scheme C /OK flat and proper over OK and equipped with
a specified isomorphism

C ×OK
K → C

where we call the left hand side the generic fibre of the model. We define the special fibre of
the model to be the projective curve

Ck = C ×OK
k

over k.

Example 3. Let E/Qp be an elliptic curve with minimal Weierstrass equation

E : y2 = x3 + ax+ b

a, b ∈ Zp. Then
E :
{
y2z − x3 − axz2 − bz3 = 0

}
⊂ P2

Zp

is a model for E and has special fibre Ẽ/Fp.
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Figure 1: A model of a curve C

Want: An equation-free way of specifying the “best” model. Broadly there are 2 ways to go:

• Insist C /OK is regular. “Smooth as a surface”, c.f. y2 = x3 + x ⊂ A2. This leads us to the
minimal regular model

– Can always find such a model,
– Have intersection theory.

but

– Special fibre can be complicated,
– Doesn’t commute with ramified base change.

• Ask for special fibre to be as close to a nice curve as possible, maybe at the expense
of replacing K by a finite extension. This leads us to the notion of semistable/stable
models.

9 Structure of Singular Curves
Let k be a field, to start with we assume that k = k. Let X/k be a projective, reduced, connected
curve (note we are allowing singular points and multiple irreducible components). We denote by
Xsing the (finite) set of singular points of X.

Definition 9.1. The normalisation of X, X̃ is the disjoint union of normalisations of the
individual irreducible components. In particular X̃ is a disjoint union of nice curves, and there
is a canonical normalisation map

π : X̃ → X

which is an isomorphism away from the set of singular points.

Figure 2: A visualisation of normalisation

Remark 9.2. Locally over U = specA ⊂ X the irreducible components meeting U are in bijection
with minimal prime ideals of A say p1, . . . , pr. Then Ũ := π−1U is spec

∏r
i=1 Ã/pi. And π is

precisely the inclusion into the product, Ã/pi is the integral closure of the domain A/pi.
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We have a short exact sequence of sheaves on X

0 // OX
// π∗OX̃

// S // 0

with S defined by the sequence, and S supported on Xsing.

Definition 9.3. For x ∈ X a closed point, define δx = dimk(Sx).

• Have δx = 0 ⇐⇒ X smooth at x.

• Say x is an ordinary double point if δx = 1 and mx :=
∣∣π−1 {x}

∣∣ = 2.

Remark 9.4. This is quite technical for a definition. It can be shown that x is an ordinary
double point if and only if ÔX,x

∼= k[[u,v]]
uv

Figure 3: An ordinary double point.

• Y an affine plane curve, {f(x, y) = 0} with (0, 0) ∈ Y . Then write f(x, y) =
∑

i fi as a
sum of homogenous polynomials fi of degree i. Then (0, 0) is smooth if and only if f1 6= 0,
and is an ordinary double point if and only if disc(f2) 6= 0

Definition 9.5. We say that a (projective, reduced, connected) curve X is semistable if all the
singular points are all ordinary double points. We say that X is stable if also Aut(X) is finite
or equivalently X has arithmetic genus ≥ 2 and any irreducible component ∼= P1 meets other
components in ≥ 3 points.

In general if k 6= k then say X is semistable/stable if Xk is (connected, reduced, projective
and) semistable/stable.

10 the Dual Graph of a Semistable Curve
Definition 10.1. k = k (else replace X with Xk) then the dual graph of a semistable curve X
is the graph G with vertices the irreducible components of X and edges the ordinary double points
joining the components they lie on.

Example 4. 1.
y2 = x2(x− 1)2(x+ 1)2 (1)

Figure 4: The dual graph of (1)

2.
y2 = x2(x− 1)2(x+ 1)2(x− 2) (2)
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Figure 5: The dual graph of (2)

11 Semistable Models of Curves
Let K/Qp be a finite extension, and C/K a nice curve.

Definition 11.1. We say that C has semistable reduction if there exists a model C /OK for
C with Ck a semistable curve over k. If there exists such a model where the special fibre is a
nice curve then we say that C has good reduction. We call any model C /OK with (semi)stable
special fibre a (semi)stable model.

Theorem 11.2 (Deligne-Mumford). Let C/K be a nice curve, then there exists some L/K a
finite extension such that C has semistable reduction over L.

Moreover we have

Proposition 11.3. If the genus of C is ≥ 2 and C has semistable reduction over L then it has
a stable model Cst over L. This is unique up to OL-isomorphism and commutes with further
extensions of L. We call its special fibre the stable reduction of C.

Lecture 3: Clusters

Let us recall the notation thus far. LetK/Qp be a finite extension with OK , k, vK the integers,
residue field and normalised valuation. Let C/K be a nice curve of genus g ≥ 2. Last time we
had the Deligne-Mumford theorem which says that there is L/K finite such that C has a stable
model Cst over L.

Figure 6: A model of a curve C.

12 Relationship between Stable Model and Minimal Regu-
lar Model

Suppose that C/K has semistable reduction, and Cst/OK is the associated stable model as in
Theorem 11.2, Assume that each ordinary double point x ∈ Cst,k is split (i.e. both x and the
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two poinits over x in the normalisation of Cst,k are defined over k). Then for each ordinary
double point x:

ÔCst,x
∼=
OK [[u, v]]

〈uv − c〉
for some c ∈ OK with vK(c) ≥ 1. Call n(x) = vK(c) the thickness of x. We have that x is
a regular point of Cst if and only if n(x) = 1. In general, the minimal regular model of C is
obtained from Cst by replacing each ordinary double point x with a chain of n(x)−1 many copies
of P1 meeting transversally (see Figure 7).

Figure 7: Obtaining the minimal regular model from the stable model.

Remark 12.1. As the minimal regular model commutes with unramified extension and each
ordinary double point is split over unramified extensions, we see that if C has semistable reduction
then the regular model is semistable.

13 Semistable Models of Hyperelliptic Curves
K/Qp a finite extension with p odd, and fix C/K a hyperelliptic curve of genus ≥ 2.

Aim: Describe the stable model of C over a sufficiently large extension.
We do this by taking an example along the way

Example 5. We take the genus 3 curve over Qp (p odd):

C : y2 = x(x− p)(x− p3)(x+ p3)(x− 1)(x− 1− p2)(x− 1 + p2)

We will compute:

• C/Qp has semistable reduction.

• Special fibre of the stable model is given in figure 11

Figure 8: The special fibre of the stable model for Example 5

• Minimal regular model is the stable model.
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Rough Idea: Have a degree 2 map φ : C → P1. Models of P1 can be described very explicitly
– idea is to construct a model of C as a suitable double cover of a model of P1. By suitable we
mean that the closure of the branch locus of φ has to have a particular shape.

Remark 13.1. Bouw-Wewers study this more generally for cyclic covers of P1 and get an algo-
rithm for computing stable models.

Fix a Weierstrass equation for the hyperelliptic curve:

C : y2 = f(x)

with f ∈ K[x] of degree ≥ 5. Define

• cf the leading coefficient of f

• R the set of roots of f in K

Example 6 (5 continued). We have cf = 1, R =
{
p, 0, p3,−p3, 1, 1 + p2, 1− p2

}
Assume:

1. R ⊂ K (else replace K by a finite extension)

2. deg(f) = 2g + 1 (else change variables to move a point of the form (r, 0) for r ∈ R to ∞)

Definition 13.2. A cluster is a nonempty subset of R cut out by a disc. i.e. a nonempty
subset S ⊂ R with S = {r ∈ R | v(r − z) ≥ n} for some n ∈ Z and z ∈ K (WLOG z ∈ R).

Call the maximal such n the depth of S, denoted dS.

Example 7 (5 continued). The clusters of size at least 2 are:

R =
{
p, 0, p3,−p3, 1, 1 + p2, 1− p2

}
dR = 0

S1 =
{

1, 1 + p2, 1− p2
}

dS1
= 2

S2 =
{
p, 0, p3,−p3

}
dS2 = 1

S3 =
{

0, p3,−p3
}

dS3
= 3

Figure 9: Inclusions for the clusters obtained from Example 5

Definition 13.3. If S′ ⊂ S is a maximal proper subcluster then we call S′ a child of S and S
a parent of S′. We write S′ ≤ S or S = P (S′).

We say that S is odd/even if |S| is odd/even, and call S übereven if it is even and so too
are all of its children.
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Definition 13.4. Define the tree TC with

• 1 vertex vS for each cluster S of size ≥ 3

• An edge between vS and vp(S) for each S 6= R.

• colour vS yellow if S is übereven, blue otherwise.

• colour the edge between S, p(S) blue if S is odd and yellow if S is even.

Figure 10: A sketch of the tree for Example 5

Example 8 (5 continued).

13.1 The Stable Model of C
Assume for simplicity that there is no S of size 2g. Then

1. C/K has semistable reduction if and only if for each cluster S of size ≥ 3

DS := vK(cf ) + |S| dS +
∑
r 6∈S

vK(zS − r)

is even (for any choice of zS ∈ S).

2. If 1 holds then the dual graph of Cst,k is the same as a graph GC given by

(a) Glueing 2 copies of TC along the common blue part – call this G̃C .
(b) Add for each S with |S| = 2: a loop at the unique vertex of G̃C over vp(S) if vp(S) is

blue; an edge between the 2 vertices of G̃C over vp(S) if vp(S) is yellow.

3. The normalisation of the component ΓS corresponding to S of Cst,k over a vertex vS of GC
is the curve

ΓS : y2 = cS
∏

oddO≤S

(x− redS(O))

where cS ∈ K× is given by

cS :=
cf

πvK(cf )

∏
r 6∈S

ZS − r
πvK(ZS−r)

mod π

for ZS any element of S and

redS(O) =
ZO − ZS

πdS
mod π

for ZO any element of O.
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13.2 The Minimal Regular Model of C
Let C be as above, assume that C/K is semisimple. The thickness of an ordinary double point
x (↔ edge e ∈ GC corresponding to S ≤ P (S)) is

n(e) =


dp(S)−dS

2 e came from a blue edge
dp(S) − dS e came from a yellow edge
2dp(S) − dS |S| = 2

14 Néron Models of Abelian Varieties
As usual, K/Qp finite and not we return to p arbitrary. For abelian varieties there exists an
undisputed best model called the Néron model.

Definition 14.1 (/Theorem). Let A/K be an abelian variety. Then there exists a smooth,
separated, finite type group scheme A /OK with generic fibre A and which satisfies the universal
property (Néron mapping property):

For any Y/OK smooth, any K-morphism YK → A extends uniquely to an OK-morphism
Y → A .

This A is the Néron Model of A.

Remark 14.2. We have traded properness for smoothness, but the Néron mapping property still
forces A (OK) = A(K). In particular, we get a reduction map A(K) → Ak(k) and we call Ak

the reduction of A. This is a group variety over k.
If Ak is an abelian variety then we say that A has good reduction, analogously to what we did

for elliptic curves.

Definition 14.3. Write A ◦k for the connected component of the identity in Ak. We write A ◦/OK

for the open subscheme of A given by removing non identity cusps of the special fibre.
We also write A◦(K) for the points reducing to A ◦(k), and the order of the group A(K)/A◦(K)

is the Tamagawa number of A.

Definition 14.4. The Tamagawa Number is equivalently #(Ak/A ◦k )(k).

Lecture 4: Tate Modules and local L-factors

We have the usual setup for this talk, Let K/Qp be a finite extension with the usual data:
OK , k, v.

14.1 Néron Models of Elliptic Curves
Proposition 14.5. Let E/K be an elliptic curve, then we have:

1. The Néron model E /K of E is the smooth part of the minimal regular model of E.

2. The identity component E ◦/OK is the smooth part of the minimal Weierstrass model of E
(The OK-scheme defined by a minimal Weierstrass equation).
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I haven’t mentioned the actual definition of minimal regular model, mainly because I forgot to
actually concretely state it. A model C for a curve is minimal if for any other model C ′ the
map on generic fibres corresponding to the identity on the curve extends to a morphism C ′ → C .
One can show that there always exists a regular model which is minimal in this sense, which we
call the minimal regular model.

Example 9. E/K with multiplicative reduction.

Figure 11: The special fibre of the stable model for Example 5

The component group is Φ = Ek

E ◦
k

∼= Z/nZ with Frobk acting as{
1 split mult reduction
−1 split mult reduction

Let C/K be a nice curve of genus g and J = Jac(C) which is a g dimensional abelian variety
over K. Assume that g ≥ 2 or C is an elliptic curve and let J /OK be the Néron model of J .

Theorem 14.6 (Raynaud). Let C /OK be one of

• A semistable model for C

• A regular model for C such that the gcd of multiplicities of the irreducible components of
the special fibre is 1.

Then the identity component of J /OK is Pic0
C/OK

(the identity component of the relative picard
functor – don’t think too hard about what this means if you don’t know!). In particular

• J ◦
k = Pic0

Ck/k
⇒J ◦(k) ∼= Pic0(Ck) – the line bundles of degree 0 on Ck.

• If C has nice special fibre, i.e. C has good reduction, then Jk = Jac(Ck).

Remark 14.7. If C /OK is regular we can also describe the component group.
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14.2 The Tate Module of J
Assume that C/K is semistable, C /OK is any semistable model. Then J is also semistable,
i.e. the identity component of its Néron models special fibre J ◦

k is an extension of an abelian
variety over k by a torus. In fact, the converse (J semistable gives C semistable) is also true.

Aim: To understand T`(J) = lim←n
J [`n] 	 GK .

Remark 14.8. As GK-modules, T`(J)∨ ∼= H1
et(Ck,Z). We will explicitly describe T`(J)IK , The

unramified subgroup as a Gal(Knr/K) = Gk module. In fact,

• Action of the individual elements of IK on T`(J) can be understood by the Grothendeick
Picard-Lefschetz formula.

– Can use this to construct transvections in the Galois image.

• If instead we only assume that C becomes semistable over some finite L/K then we can
incorporate the Gal(L/K)-action in the following to describe, for example, T`(J)IK .

Step 1: Since Néron models commute with unramified extensions (or using the Néron
mapping property since specOF → specOK is smooth for F/K unramified).

We have a reduction map
J(Knr)→ Jk(k)

equivariant for the action of Gk = Gal(Knr/K) = Gal(k/k).

Proposition 14.9 (Serre-Tate). Reduction induces a Gk-module isomorphism

T`(J)IK ∼=Gk
T`(J

◦
k ).

In particular, if J has good reduction, then T`(J) is unramified and

T`(J) ∼=GK
T`(Jk)

with Gk action.

Adding in Raynauds theorem we now know

Corollary 14.10. Whenever the conditions of Theorem 14.6 hold, we have that:

T`(J)IK ∼=Gk
T`(Pic0(Ck))

Remark 14.11. If C has nice special fibre so that C has good reduction, we have

T`(J) ∼=GK
T`(Jac(Ck))

as GK-modules. Thanks to the Weil conjectures we can understand this (e.g. local factors of
L-functions of J) by counting points on Ck over extensions of k.

Andrew Sutherland will go into detail on this next week.

Proposition 14.12. Let G be the dual graph of Ck and C̃k the normalisation of Ck. Then we
have a short exact sequence of Gk-modules

0 // H1(G,Z)⊗ Z`(1) // T`(Pic0(Ck)) // T`(C̃k) // 0
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where the first term is singular cohomology group of the graph G and Z`(1) = lim←n µ`n , the
`-adic tate module of k

×
. Moreover

T`(Pic0(C̃k)) =
⊕

Gk−orbits of Γ
irred. component

of Ck

IndGK

stab Γ T`(Jac(Γ̃))

Remark 14.13. GK-action on H1(G,Z) = Hom(H1(G,Z),Z) is determined by the Gk-action:

• Components of Ck,

• Ordinary double points of Ck,

• Points of C̃k lying over each ordinary double point thought of as edge endpoints.

Sketch proof: Let X = Ck, X̃ = C̃k, π : X̃ → X the normalisation map and Xsing the ordinary
double points of X. We have a short exact sequence

0 // O×X // π∗O×X̃
// F // 0

for F some skyscraper sheaf supported on the singular points of X. Taking cohomology gives

0 // O×X(X) // OX̃(X̃×) // F (X) // H1(X,O×X) // H1(X,π∗(OX̃
×)) // 0

where the first nonzero term is k
×
, thes second is

∏
r irred cmpt k

×
, the third is

∏
x∈Xsing

k
×
,

the fourth is Pic(X) and then the fifth the product
∏

Γirred cmpt Pic(Γ̃), and the final term is 0
because F is flasque.

Restrict to degree 0 line bundles and get

0 // k
× // ∏

Γ
irred cpnt

k
× // ∏

x∈Xsing
k
× // Pic0(Ck) // ∏

Γ Jac(Γ̃)(k) // 0

Take Tate modules and we find that

0 // Z`(1) //⊕
Γ Z`(1) //⊕

x∈Xsing
Z`(1) // T`(Pic0(CK)) //⊕

Γ T`(Jac(Γ̃)) // 0

(3)
On the other hand, with the simplicial chain complexes for G the 0-simplices (vertices) are

irreducible components and the 1-simplices (edges) are ordinary double points so

0 // H1(G,Z) //⊕
edges Z · e //⊕

vertices Z · v // Z // 0

Applying Hom(−,Z)⊗Z`(1) and computing with (3) gives the result provided that we track the
Gk action carefully.

14.3 Computation of Local Factors of L-functions of J
Recall that the local L-polynomial is defined

L(J/K, T ) = det(1− Frob−1
K T | (V`(J)∨)IK )

16



Corollary 14.14.

L(J/K, T ) = det

1− Frob−1
K T

∣∣∣∣∣∣∣∣ H1(G,Q`)⊕
⊕

Gk orbits
of irred cpnts Γ

IndGK

stab(Γ) T`(Jac(Γ̃))


Proof. The Weil pairing on the tate module of J lands in Z`(1) and gives T`(J)∨ ∼= T`(J)(−1),
called the Tate twist. In particular (T`(J)∨)IK ∼= T`(J)IK (−1). Then twist by (−1) in the propo-
sition ⊗Z`

Q`, and note that the characteristic polynomials depend only on the semisimplification
of a representation and the first cohomology and homology are isomorphic representations.

Example 10. Let E/K be an elliptic curve with multiplicative reduction. Take the minimal
Weierstrass model, so that the special fibre Ck is a nodal cubic curve. Then the Jacobian of the
normalisation of the special fibre Ck is the Jacobian of P1 which is 0. Moreover H1(G,Q`) is
isomorphic to Q` with Gk acting trivially if E has split multiplicative reduction, and with Frob
acting as multiplication by −1 in the case of non-split. Applying the Corollary above we obtain
that

L(E/K, T ) =

{
1− T E has split multiplicative reduction
1 + T E has nonsplit multiplicative reduction

17
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