COMPLEX MULTIPLICATION

COURSE: EUGENIA ROSU AND JAN VONK NOTES: ROSS PATERSON

DISCLAIMER. These notes were taken live during lectures at the Spring School on Arithmetic Statistics held at CIRM from $8^{\rm th}-12^{\rm th}$ May 2023. Any mistakes are the fault of the transcriber and not of the lecturer, they have not been proofread in any meaningful way.

In general, \sum' means take the sum excluding the obvious elements which are not defined (typically 0's)

LECTURE 1 (JAN VONK)

We begin, very classically, with a viewpoint due to Eisenstein. Forget everything you know about trigonometric functions!

1. Cyclotomy

Consider $\mathbb{Z} \subseteq \mathbb{R}$, and think about the quotient \mathbb{R}/\mathbb{Z} which we usually think of as the circle group. We'd like to think of this quotient algebraically.

To do this we shall look at the invariant functions for $k\geq 2$

$$\alpha_k(z) = \sum_{\lambda \in \mathbb{Z}} \frac{1}{(z - \lambda)^k}.$$

Many polynomial relations exist between these (for example $\alpha_2^2 = \alpha_4 + \Omega_2 \alpha_2$) with coefficients equal to combinations of

$$\Omega_k := \sum_{\lambda \in \mathbb{Z}'} \frac{1}{\lambda^k}.$$

There are extra terms to add:

• Consider the case k = 1, and define in pretty much the same way

$$\alpha_1(z) := \frac{1}{z} + \sum_{\substack{\lambda \in \mathbb{Z}' \\ 1}} \frac{1}{z - \lambda} + \frac{1}{\lambda}$$

This is absolutely convergent (unlike what we would have had if we hadn't modified for k = 1) and is translation invariant. It satisfies the relation

(1)
$$\alpha_1^2 = \alpha_2 - 3\Omega_2.$$

• We want a multiplicative lift for

$$d \log / dz : f \mapsto f' / f$$

for our function α_1 . We take

$$\mathfrak{S}(z) := \pi z \prod_{\lambda \in \mathbb{Z}'} \left(1 - \frac{z}{\lambda} \right) \exp\left(\frac{z}{\lambda} \right),$$

and note that we can prove formally the following two identities:

$$(d \log / dz)(\mathfrak{S}) = \mathfrak{S}'(z)/\mathfrak{S}(z) = \alpha_1(z)$$
$$\mathfrak{S}(z+1) = -\mathfrak{S}(z)$$

1.1. Periods. Euler realised that

$$\mathfrak{S}(z) = \sin(\pi z),$$

so that

$$\begin{aligned} \alpha_1(z) &= \frac{1}{z} - \sum_{k \ge 2} \Omega_k z^{k-1} \\ &= \pi \cot(\pi z) \\ &= -\pi i (e^{2\pi i z} + 1) / (e^{2\pi i z} - 1). \end{aligned}$$

From this we deduce that for $k \ge 2$

$$\Omega_k = \frac{(2\pi)^k}{k!} \left| B_k \right|$$

where B_k are Bernoulli numbers. This leads us nicely on to special values.

1.2. Special Values. Consider the set of vaues at division points of \mathbb{R}/\mathbb{Z} , i.e. $z \in \mathbb{Q}/\mathbb{Z}$.

We have the Chebyshev polynomials

 $T_n(\cos(\theta)) = \cos(n\theta),$

so find that the values of $\sigma(z)$ at division points are algebraic.

Example 1. Consider z = 2/17, then we get $\frac{1}{2n}(\zeta_{17} - \zeta_{17}^{-1}) \in \mathbb{Q}(\zeta_{68}) =: K$. It is half of a 17-unit, i.e. it is half of an element in $\mathcal{O}_K[1/17]^{\times}$.

2. Elliptic Functions

Consider a rank 2 lattice $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \subseteq \mathbb{C}$ Again, we want to find invariant functions. For $k \geq 3$ we define

$$\alpha_k(\Lambda, z) = \sum_{\lambda \in \Lambda} \frac{1}{(z - \lambda)^k}.$$

Outside the range of convergence we define as follows.

• for k = 2 we write

$$\alpha_2(\Lambda, z) = \frac{1}{z^2} + \sum_{\lambda \in \Lambda'} \left(\frac{1}{(z - \lambda)^2} - \frac{1}{\lambda^2} \right),$$

which is usually known as the Weierstrass $\wp\mbox{-}{\rm function}.$ This is an invariant function.

• For k = 1 we define

$$\alpha_2(\Lambda, z) = \frac{1}{z} + \sum_{\lambda \in \Lambda'} \left(\frac{1}{(z - \lambda)} + \frac{1}{\lambda} + \frac{z}{\lambda^2} \right).$$

This is often called the Weierstrass ζ -function, but it is **NOT** invariant! We have a transformation law:

$$\alpha_1(\Lambda, z + \omega_i) = \alpha_1(\Lambda, z) + \eta_i.$$

We have multiplicative lifts given by

$$\sigma(\Lambda, z) := z \prod_{\lambda \in \Lambda'} \left(1 - \frac{z}{\lambda} \right) \exp\left(\frac{z}{\lambda} + \frac{z^2}{2\lambda^2} \right),$$

and it satisfies

$$(d \log / dz)(\sigma) = \sigma'(z) / \sigma(z) = \alpha_1(\Lambda, z)$$

$$\sigma(\Lambda, z + \omega_i) = -\exp\left(\eta_i\left(z + \frac{\omega_i}{2}\right)\right)\sigma(\Lambda, z)$$

2.1. Special Values. The Values at division points of \mathbb{C}/Λ We will study values at division points when Λ has complex multiplication, i.e.

$$\{\alpha \in \mathbb{C} : \alpha \Lambda \subseteq \Lambda\} \supsetneq \mathbb{Z}.$$

We will look at:

(1) singular moduli, e.g. the *j*-invariant $j(\Lambda) = \frac{(60\Omega_4(\Lambda))^3}{(60\Omega_4(\Lambda))^3 - (140\Omega_6(\Lambda))62};$

(2) elliptic units, i.e. quotients of σ -functions (Klein forms), for example

 $(\Delta|\gamma)/\Delta$

for $\gamma \in M_2(\mathbb{Z})$ and Δ the usual Ramanujan modular form.

Some remarks on CM theory:

- Heegner (1952) used CM theory to construct integral points on modular curves $X_{ns}(p)$, solving the class number 1 problem for imaginary quadratic fields.
- Coates–Wiles (1976) used elliptic units to prove the Birch–Swinnerton-Dyer conjecture in the analytic rank 0 case.
- Gross–Zagier (1985) determine factorisation of (differences of) singular moduli to obtain the Birch–Swinnerton-Dyer conjecture in the analytic rank 1 case.

LECTURE 2 (VONK)

Today: Special values at CM lattices $\Lambda = \alpha \langle 1, \tau \rangle$ of

$$j(q) := \frac{\left(1 + 240 \sum_{g \ge 1} \frac{n^3 q^n}{1 - q^n}\right)}{q \prod_{n \ge 1} (1 - q^n)^{24}}$$
$$= \frac{1}{q} + 744 + 196884q + 21493760q^2 + \dots \in q^{-1}\mathbb{Z}[[q]],$$

as well as of $(\Delta|_{\gamma})/\Delta$ for $\gamma \in M_2(\mathbb{Z})$ with $\det(\gamma) = p$.

Notation 2. Pick coset representatives for

$$\operatorname{SL}_2(\mathbb{Z}) \setminus \{ \gamma \in M_2(\mathbb{Z}) : \operatorname{det}(\gamma) = p \} =: M_p$$

by setting (for $j \in \{0, ..., p-1\}$)

$$\gamma_j := \begin{pmatrix} 1 & j \\ 0 & p \end{pmatrix}$$
$$\gamma_\infty := \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$$

3. Singular Moduli

Theorem 3. There exist $\Phi_p(x, y) \in \mathbb{Z}[x, y]$ such that

$$\Phi_p(x, j(\tau)) = \prod_{\gamma \in M_p} (x - j(\gamma \tau)) = \mathcal{P}(x).$$

It satisfies $\Phi_p(x,y) = \Phi_p(y,x)$, and the leading coefficient $\Phi_p(x,y) = \pm 1$.

Proof. Coefficients a_i of $\mathcal{P}(x)$ are:

- holomorphic on $\mathfrak{h} = \{z \in \mathbb{C} : \Im(z) > 0\};$ and
- $SL_2(\mathbb{Z})$ -invariant; and
- meromorphic.

In particular they are in $\mathbb{C}[j]$. Note that $\exp\left(2\pi i\left(\frac{\tau+j}{p}\right)\right) = \zeta_p^j q^{1/p}$ so as q-series in $q^{-1}\mathbb{Z}[\zeta_p][[q]]$ the coefficients are invariant under $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$. Thus they are in $\mathbb{Z}[j]$.

Th leading term of $j(\tau) - j(\gamma \tau)$ is a root of unity. Thus the leading term of $\Phi_p(x, x)$ must be an integer root of unity, meaning that it must be ± 1 .

Example 4 (Very Large). See the webpage of Drew Sutherland for many excellent huge examples. Here is a small-ish one.

$$\Phi_2(x,x) = (x - 8000)(x + 3375)^2(x - 1728)$$

$$\Phi_3(x,x) = x(x - 2^65^3)(x + 2^{15})^2(x - 2^43^35^3)$$

$$\Phi_5(x,x) = (x^2 - 2^75^379x - 2^{12}5^311^3) \text{(degree 8 factor)}$$

Let \mathcal{O} be an imaginary quadratic order, $\mathfrak{a} \leq \mathcal{O}$ a proper ideal, and p be a prime number such that $p\mathcal{O} = \mathfrak{p}\overline{\mathfrak{p}}$ with \mathfrak{p} principal (this is a positive density choice by Chebotarev). Then

$$\mathfrak{pa}\subset\mathfrak{a}$$

is of index \mathfrak{p} and $j(\mathfrak{pa}) = j(\mathfrak{a})$ so $j(\mathfrak{a})$ is a root of $\Phi_p(x, x)$, so is an algebraic integer. Example 5.

$$j(\sqrt{-1}) = 1728$$
$$j(\sqrt{-2}) = 8000$$
$$j\left(\frac{1+\sqrt{-7}}{2}\right) = -3375$$

Moreover $j(\sqrt{-5})$ is a root of $\Phi_5(x)$. Here is a riddle: $j\left(\frac{1+\sqrt{-63}}{2}\right) = -2^{18}3^35^323^329^3 \in \mathbb{Z}$, which polynomial should give this? The answer is 41, try to see this.

Theorem 6 (Kronecker's congruence).

 $\Phi_p(x,y) \equiv (x^p - y)(x - y^p) \mod p$

Proof. Note that $\exp\left(2\pi i \frac{\tau+j}{p}\right) = \zeta_p^j q^{1/p} \equiv q^{1/p} \mod \zeta_p - 1$, so that

$$\Phi_p(x,j) \equiv (x - j(q^{1/p}))^p (x - j(q^p)) \mod (\zeta_p - 1)$$

$$\equiv (x^p - j(q))(x - j(q)^p)$$

For any $p\mathcal{O} = \mathfrak{p}\overline{\mathfrak{p}}$ we have

$$(j(\mathfrak{a})^p - j(\mathfrak{a}\mathfrak{p}))(j(\mathfrak{a}\mathfrak{p})^p - j(\mathfrak{a})) \mod p.$$

Want: We want to prove that this first factor is in fact $\equiv 0 \mod \overline{\mathfrak{p}}$.

4. Some Elliptic Units

Definition 7. For all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_p$, define

$$h_{\gamma} := (\Delta|\gamma)/\Delta := \det(\gamma)^{12}(c\tau + d)^{-12}\frac{\Delta(\gamma\tau)}{\delta(\tau)}.$$

Theorem 8. There exists $\Upsilon_p(x,y) \in \mathbb{Z}[x,y]$ such that

$$\Upsilon(x, j(\tau)) = \prod_{\gamma \in M_p} (x - h_{\gamma}(\tau)).$$

It satisfies

$$\Upsilon(0,y) = p^{12}$$

Proof. This is in the exercises.

Example 9. We have

$$\begin{split} \Upsilon_2(x,y) &= (x+16)^3 - xy, \\ \Upsilon_3(x,y) &= (x-9)^3(x-729) + 72x(x+21)y - xy^2. \end{split}$$

We see that, for \mathcal{O} an imaginary quadratic order and $\mathfrak{a} \subset \mathcal{O}$ a proper ideal, $h_{\gamma}(\mathfrak{a}) \in \overline{\mathbb{Z}}$. Unfortunately they have no rich prime factorisations, as the next theorem makes precise.

Theorem 10. Suppose $p\mathcal{O} = p\overline{p}$ is a proper ideal, then

$$\left\langle h_{\gamma(\mathfrak{p})}(\mathfrak{a}) \right\rangle = \overline{\mathfrak{p}}^{12}$$

and

$$\langle h_{\gamma(\overline{\mathfrak{p}})} \rangle(\mathfrak{a}) = \mathfrak{p}^{12},$$

where $\gamma(\mathfrak{p}) \in M_p$ relates the bases of \mathfrak{a} and \mathfrak{pa} , and $h_{\gamma}(\mathfrak{a})$ is a unit if $\gamma \neq \gamma(\mathfrak{p})\gamma(\overline{\mathfrak{p}})$

Why is this theorem true? We can make it follow from the previous one.

Proof. Let f be such that $\mathfrak{p}^f = \langle \alpha \rangle$ is principal. Then

$$\left\langle \left(p^{12} \frac{\Delta(\mathfrak{p}^f \mathfrak{a})}{\Delta(\mathfrak{p}^{f-1}\mathfrak{a})} \right) \left(p^{12} \frac{\Delta(\mathfrak{p}^{f-1}\mathfrak{a})}{\Delta(\mathfrak{p}^{f-2}\mathfrak{a})} \right) \dots \left(p^{12} \frac{\Delta(\mathfrak{p}\mathfrak{a})}{\Delta(\mathfrak{a})} \right) \right\rangle = \left\langle p^{12f} \alpha^{-12} \right\rangle = \overline{\mathfrak{p}}^{12f}.$$

Then, writing $\lambda_i = \left(p^{12} \frac{\Delta(\mathfrak{p}^i \mathfrak{a})}{\Delta(\mathfrak{p}^{i-1}\mathfrak{a})}\right)$, we have each $\lambda_i \in \overline{\mathbb{Z}}$ and divides $\overline{\mathfrak{p}}^{12} + \langle p \rangle^{12} = \overline{\mathfrak{p}}^{12}$, and $\langle \lambda_1 \dots \lambda_f \rangle = \overline{\mathfrak{p}}^{12}$. Thus $\langle \lambda_i \rangle = \overline{\mathfrak{p}}^{12}$. Theorem now follows from

$$h_{\gamma(\mathfrak{p})}(\mathfrak{a})h_{\gamma(\overline{\mathfrak{p}})}(\mathfrak{a})\prod_{\gamma\neq\gamma(\mathfrak{p}),\gamma(\overline{\mathfrak{p}})}h_{\gamma}(\mathfrak{a})\equiv\pm p^{12}$$

LECTURE 3 (VONK)

Last time we defined two different kinds of algebraic integers:

(1) Singular moduli $j(\mathfrak{a})$, for example

$$j\left(\frac{1+\sqrt{-67}}{2}\right) = -2^{15}3^35^311^3$$

(2) (some) Elliptic units $h_{\gamma}(\mathfrak{a})$, where $\gamma \in M_2(\mathbb{Z})$ with $\det(\gamma) = p$ a prime.

Example 11.
$$h_{\gamma}(\sqrt{-14}) = \frac{\left(\sqrt{2}+1+\sqrt{2\sqrt{2}-1}\right)^{12}}{2^6}$$
 for $\gamma = \begin{pmatrix} 1 & 0\\ 0 & 2 \end{pmatrix}$

Theorem 12. There exists $\mathcal{G}_p \in \mathbb{Z}[x, y, z]$ such that

$$\mathcal{G}_p(x, y, j(\tau)) = \sum_{\gamma \in M_p} (x - j(\gamma \tau)) \prod_{\delta \neq \gamma} (y - h_\delta).$$

It satisfies

$$\mathcal{G}_p(z^p, y, z) \equiv 0 \mod p$$

Proof. Since $\exp\left(2\pi i\left(\frac{\tau+j}{p}\right)\right) = \zeta_p^j q^{1/p} \cong q^{1/p} \mod \zeta_p - 1$, we find that $i(\gamma_0 \tau) \equiv i(\gamma_0 \tau) \equiv \dots \equiv i(\gamma_0 \tau \tau) \mod \zeta_p - 1$

$$j(\gamma_0 \tau) \equiv j(\gamma_1 \tau) \equiv \dots \equiv j(\gamma_{p-1} \tau) \mod \zeta_p - 1$$

and

$$h_{\gamma_0} \equiv h_{\gamma_1} \equiv \dots \equiv h_{\gamma_{p-1}} \mod \zeta_p - 1.$$

So it follows that

$$\mathcal{G}_p(x, y, j(\tau)) \equiv (x - j(q^p)) (y - h_{\gamma_0})^p + p\left(x - j(q^{1/p})\right) (y - h_{\gamma_\infty}) (y - h_{\gamma_0})^{p-1} \mod \zeta_p - 1$$

quired.
$$\Box$$

as required.

Why did we do this? Because it buys us a refinement of Kroneckers congruence!

Theorem 13. Let $\mathcal{O} \subset K$ be an imaginary quadratic order, $p\mathcal{O} = \mathfrak{p}\overline{\mathfrak{p}}$ proper, $\mathfrak{a} \subset \mathcal{O}$ proper, then

$$j(\mathfrak{a})^p \cong j(\mathfrak{a}\overline{\mathfrak{p}}) \mod \mathfrak{p}.$$

Proof. Substitute $(x, y, z) = (j(\mathfrak{a})^p, h_{\gamma(\overline{\mathfrak{p}})}(\mathfrak{a}), j(\mathfrak{a}))$ into \mathcal{G}_p above. This gives

$$(j(\mathfrak{a})^p - j(\mathfrak{a}\overline{\mathfrak{p}})) \prod_{\gamma
eq \gamma(\overline{\mathfrak{p}})} (h_{\gamma(\overline{\mathfrak{p}})}(\mathfrak{a}) - h_{\gamma}(\mathfrak{a})) \equiv 0 \mod \mathfrak{p}$$

However the product is never $0 \mod \mathfrak{p}$, so the leading factor must be $0 \mod \mathfrak{p}$. \Box

Corollary 14. Suppose that $\mathfrak{a} \subset \mathcal{O}$ is a proper ideal in an imaginary quadratic order in the quadratic field K. Then $K(j(\mathfrak{a}))$ is the ring class field of \mathcal{O} .

Remark 15. The ring class field of \mathcal{O} is the finite abelian extension $H_{\mathcal{O}}/K$ associated by class field theory to

$$\operatorname{Cl}(\mathcal{O}) \cong \mathbb{C}^{\times} \tilde{\mathcal{O}}^{\times} \backslash \mathbb{A}_{K}^{\times} / K^{\times}$$

Proof. We will sketch one direction, and leave the other as an exercise. Let $L = H_{\mathcal{O}}/K$ be the ring class field. Then take any split prime $p\mathcal{O} = \mathfrak{p}\overline{\mathfrak{p}}$ coprime to disc(\mathcal{O}), such that $[\mathcal{O}_M : \mathcal{O}_K[j(\mathfrak{a})]]$ where $M = K(j(\mathfrak{a}))$.

Then p splits completely in L/\mathbb{Q} if and only if \mathfrak{p} is a principal prime of \mathcal{O} . In particular, $j(\mathfrak{a}) = j(\mathfrak{p}\mathfrak{a}) \equiv j(\mathfrak{a})^p \mod \overline{\mathfrak{p}}$ and similarly if we swap \mathfrak{p} and $\overline{\mathfrak{p}}$. Thus p splits completely in $K(j(\mathfrak{a})) = M$. It follows from Chebotaryov that $M \subset L$.

Exercise 16. Do the following

- (1) Show that also $L \subset M$ using similar ideas, concluding the proof.
- (2) Show that $h_{\gamma}(\mathfrak{a}) \in L$.

Specialising to $\mathcal{O} = \mathcal{O}_K$ being maximal, we find the following corollary.

Corollary 17. Let $\mathfrak{a} \subset \mathcal{O}_K$ be a proper ideal, then \mathfrak{a}^{12} becomes principal in the Hilbert class field H/K.

Remark 18. This is a weaker in comparison to the principal ideal theorem, but it does give an explicit generator!

Definition 19. The Dedeking eta function is

$$\eta(q) := q^{1/24} \prod_{n \ge 1} (1 - q^n),$$

where, as usual, $q = e^{2\pi i \tau}$.

Remark 20. Note that $\eta^{24}(q) = \Delta(q)$, and it satisfies

$$\eta(\tau+1) = \zeta_{24}\zeta(\tau)$$

$$\eta(-1/\tau) = \sqrt{-i\tau}\eta(\tau).$$

where for the square root we are choosing the branch that is 1 on the imaginary axis.

The special values at CM points relate to L-functions, by the Kronecker limit formula. This formula is given as follows.

Definition 21. Consider real Eisenstein series

$$E(\tau,s) := \sum_{m,n\in\mathbb{Z}}' \frac{\Im(\tau)^s}{\left|m\tau + n\right|^{2s}}$$

for $\Re(s) > 1$.

Theorem 22 (Kronecker Limit Formula).

$$E(\tau, s) = \frac{\pi}{s-1} + 2\pi \left(c - \log \left(\sqrt{\Im(\tau)} \left| \eta(\tau) \right| \right)^2 \right) + O(s-1).$$

Specialising to CM points, and using our previous results, we find

$$\zeta_{\mathfrak{a}}(s) = \sum_{\mathfrak{b} \sim \mathfrak{a}} N(\mathfrak{b})^{-s} = \frac{k}{s-1} + c(\mathfrak{a}) + O(s-1),$$

where $c(\mathfrak{a}_1) - c(\mathfrak{a}_2) = \log(u)$ for $u \in \mathcal{O}_H^{\times}$

LECTURE 4 (ROSU)

We'll pick up where Jan left off yesterday, and make the jump to the 20th century.

5. Shimura Reciprocity Law

Goal: Shimura reciprocity law.

5.1. Motivation. Let $K = \mathbb{Q}(\sqrt{-D})$ for some D > 0 be an imaginary quadratic field, let H be the hilber class field of K, let $\mathfrak{a} \leq \mathcal{O}_K$ be an ideal viewed as a lattice in \mathbb{C} . To this ideal we have an associated elliptic curve $E_{\mathfrak{a}}$ such that

$$E_{\mathfrak{a}}(\mathbb{C}) \cong \mathbb{C}/\mathfrak{a}.$$

The equation for this curve is given by

$$E_{\mathfrak{a}}: y^2 = 4x^3 - \frac{27j(\mathfrak{a})}{j(\mathfrak{a}) - 1728}x - \frac{27j(\mathfrak{a})}{j(\mathfrak{a}) - 1728}.$$

Moreover, $j(\mathfrak{a}) \in H$.

Theorem 23. If $\mathfrak{b} \leq \mathcal{O}_K$ is an ideal coprime to \mathfrak{a} , then

$$i(\mathfrak{a})^{\sigma_{\mathfrak{b}}^{-1}} = j(\mathfrak{a}\mathfrak{b}),$$

where $\sigma_{\mathfrak{b}} \in \operatorname{Gal}(H/K)$ is the element corresponding to the ideal class \mathfrak{b} via the Artin map.

Remark 24. If \mathfrak{a} is a primitive ideal in \mathcal{O}_K ,

$$\mathfrak{a} = \left\langle a, \frac{-b + \sqrt{-d}}{2} \right\rangle_{\mathbb{Z}}$$

with

$$a = N_{K/\mathbb{Q}}(\mathfrak{a})$$

 $b^2 \equiv -D \mod 4a.$

$$b^2 \equiv -D \mod b^2$$

Moreover

$$j(\mathfrak{a}) = j\left(\frac{-b + \sqrt{-D}}{2a}\right)$$

Goal: Through a similar process, compute $(f(\tau))^{\sigma}$ for f a modular function and τ a CM point $(A\tau^2 + B\tau + C = 0 \text{ for } A, B, C \in \mathbb{Z})$. We will connect:

- (1) automorphism space of the space of modular functions \mathcal{F} .
- (2) Galois actions: the action of $\operatorname{Gal}(K^{\operatorname{ab}}/K)$ on $f(\tau) \in H \cap K$ for τ a CM point. By this we really many for $x \in \mathbb{A}_K/K^{\times}$ we associate under the artin map $\sigma_x \in \operatorname{Gal}(K^{\operatorname{ab}}/K)$ and

$$(f(\tau))^{\sigma_x} = f^{x_\tau}(\tau).$$

5.2. Modular Functions. Let $\zeta_N = e^{2\pi i/N}$, and write X(N) for the modular curve of level N over $\mathbb{Q}(\zeta_N)$. Note

$$X(N)_{\mathbb{C}} \cong \Gamma(N) \setminus \mathcal{H} \cup \{ \text{cusps} \} ,$$

and the function field is

 $\mathbb{Q}(\zeta_N)(X(N)) =: \mathcal{F}_N = \{ \text{modular functions of level } N \text{ with fourier coefficients in } \mathbb{Q}(\zeta_N) \}.$

Definition 25. Modular functions $f : \mathcal{H} \to \mathbb{C}$ are functions satisfying

- (1) f is holomorphic on \mathcal{H} ;
- (2) f is invariant under $\Gamma(N)$, that is

$$f\left(\frac{az+b}{cz+d}\right) = f(z)$$

(3) f is 'meromorphic at cusps', roughly meaning that at ∞ the q-expansion satisfies $f(q) = \sum_{n=-m}^{\infty} a_n q^{n/N}$, and similarly at the other cusps.

Example 26. In fact $j \in \mathcal{F}_1$. Moreover if f, g are modular forms of weight k and level N then $f/g \in \mathcal{F}_N$.

- (1) $\mathcal{F}_1 = \mathbb{Q}(X(1)) = \mathbb{Q}(j);$ (2) $\mathcal{F}_N = \mathbb{Q}(\zeta_N) = \mathbb{Q}(j, f_{0,1}, \dots, f_{1,0}),$ where these $f_{i,j}$ are the 'Fricke functions'.

Theorem 27. $\mathcal{F}_N/\mathcal{F}_1$ is Galois and moreover

$$\operatorname{Gal}(\mathcal{F}_N/\mathcal{F}_1) \cong \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})/\{\pm 1\}.$$

Idea of proof. We give the idea. There are two actions in play.

(1) For $f \in \mathcal{F}_N$, we can construct a polynomial (much like in yesterdays lecture)

$$P_f(X) = \prod_{A \in \operatorname{SL}_2(\mathbb{Z})/\Gamma(N)} (X - f(Az)) \in \mathbb{Q}(\zeta_N, j)[X].$$

Here $A \in \mathrm{SL}_2(\mathbb{Z})/\Gamma(N) \cong \mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})$, and $A \cdot j = f(Az)$

(2) Let $\sigma_d \in \operatorname{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q}) \cong \mathbb{Z}/N\mathbb{Z}^{\times}$ be the automorphism such that $\zeta_N \to$ ζ_N^d . Then

$$f^{\sigma_d}(z) = \sum_{n=-m}^{\infty} a_n^{\sigma_d} q^{n/N}.$$

We embed this in $\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$ via $d \mapsto \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}$

Note that πI always acts trivially for both of these, which is where the quotient by ± 1 is coming from. \square

Let $\mathcal{F} = \bigcup_{N>1} \mathcal{F}_N$, and then

$$\operatorname{Gal}(\mathcal{F}/\mathcal{F}_1) = \lim_{\mathcal{F}} \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})/\{\pm 1\} = \operatorname{GL}_2(\widehat{\mathbb{Z}})/\{\pm 1\},$$

where $\widehat{\mathbb{Z}} = \prod_{p \nmid \infty} \mathbb{Z}_p$.

Goal: Find $\operatorname{Aut}(\mathcal{F})$. Note that \mathcal{F}/\mathbb{Q} is **not** Galois.

Theorem 28 (Shimura). There is a short exact sequence

$$0 \longrightarrow \mathbb{Q}^{\times} \xrightarrow{\gamma} \operatorname{GL}_2(\mathbb{A}_f) \longrightarrow \operatorname{Aut}(\mathcal{F}) \longrightarrow 1,$$

where $\mathbb{A}_f = \prod_{p \nmid \infty}' \mathbb{Q}_p = \mathbb{A}_{\mathbb{Q}}/\mathbb{R}$ is the restricted direct product over only the finite places, and the map γ is the diagonal embedding $a \mapsto \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$.

Action of $\operatorname{GL}_2(\mathbb{A}_f)$ on \mathcal{F} :

$$\operatorname{GL}_2(\mathbb{A}_f) = \operatorname{GL}_2(\mathbb{Q}^+) \cdot \operatorname{GL}_2(\widehat{\mathbb{Z}}),$$

so write $g \in \operatorname{GL}_2(\mathbb{A}_f)$ as γu for $\gamma \in \operatorname{GL}_2(\mathbb{Q}^+)$ and $u \in \operatorname{GL}_2(\widehat{\mathbb{Z}})$. Note that the decomposition above is not unique but

$$f^g = (f^\gamma)^u$$

is well defined. We then have actions of the subgroups via:

• $\operatorname{GL}_2(\mathbb{Q}^+)$ acts by

$$f^{\gamma}(z) = f(\gamma z);$$

• $\operatorname{GL}_2(\widehat{\mathbb{Z}}) \to \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z}) \cong \operatorname{SL}_2(\mathbb{Z})/\Gamma(N)$ acts as before $f \mapsto f^u$.

5.3. Shimura Reciprocity Law. Recall that $K = \mathbb{Q}(\sqrt{-D})$ for D > 0 is an imaginary quadratic field, H the Hilber class field, and $\tau \in H \cap K$. We pick an embedding

$$K^* \to \mathrm{GL}_2(\mathbb{Q})$$

 $k \mapsto g_\tau(k),$

where we choose

$$g_{\tau}(k) \begin{pmatrix} \tau \\ 1 \end{pmatrix} = k \begin{pmatrix} \tau \\ 1 \end{pmatrix}$$

that is, it preserves $\binom{\tau}{1} \in \mathbb{P}^1(\mathbb{C})$. Mutatis mutandis, we define an embedding

 $\mathbb{A}_K^{\times} \to \mathrm{GL}_2(\mathbb{A}_{\mathbb{Q}}),$

where now $g_{\tau}(x) = \begin{pmatrix} t - aB/A & -Cs/A \\ s & t \end{pmatrix}$ where $\tau = s + t\tau$ for $s, t \in \mathbb{A}_{\mathbb{Q}}$ and $A\tau^2 + B\tau + C = 0$ for some $A, B, C \in \mathbb{Z}$.

Theorem 29 (Shimura). Let $f \in \mathcal{F}$ be a modular function, and $\tau \in H \cap K$. For $x \in \mathbb{A}_K^{\times}$,

$$(f(\tau))^{\sigma_x^{-1}} = f^{g_\tau(x)}(\tau),$$

where:

σ_x ↔ x via the Artin map A[×]_K → Gal(K^{ab}/K);
g_τ(x) ∈ Aut(F).

Remark 30. $f(\tau)\in K^{\rm ab},$ and by the theorem we know what the Galois conjugates are.

Example 31. Consider $K = \mathbb{Q}(\sqrt{-3})$, this is a PID, and let $f \in \mathcal{F}_N$ with integer coefficients. Take a primitive ideal

$$\mathcal{A} = \left\langle a, \frac{-b + \sqrt{-3}}{2} \right\rangle_{\mathbb{Z}},$$

where again $a = N_{K/\mathbb{Q}}(\mathcal{A})$ and $b^2 \equiv -3 \mod 4$. **Claim:** $f(\tau)^{\sigma_{\mathcal{A}}^{-1}} = f\left(\frac{-b+\sqrt{-3}}{2}\right)$ *proof.* $\sigma_{\mathcal{A}} = \sigma_x$, where

$$\left(ta + s\frac{-b + \sqrt{-3}}{2}\right) = \mathcal{A} \leftrightarrow \left(ta + s\frac{-b + \sqrt{-3}}{2}\right)_{v|\mathcal{A}} \in \mathbb{A}_K^{\times}$$

• The minimal polynomial for τ is

$$X^2 + bX + \frac{b^2 + 3}{4} = 0.$$

Then $g_{\tau}(x) = \begin{pmatrix} ta - sb & -sca \\ s & ta \end{pmatrix}_{p|\mathcal{A}}$, where $4ac = \frac{b^2 + 3}{4}$. Shimura reciprocity gives

$$f(\tau)^{\sigma_x^{-1}} = f^{g_\tau(x)}(\tau).$$

What we do is first write this as a product, that is you can compute that

$$g_{\tau}(x) = \begin{pmatrix} ta - sb & -sc \\ s & t \end{pmatrix}_{p|\mathcal{A}} \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}_{p|\mathcal{A}}$$

It is easy to see that the left hand term is in $SL_2(\widehat{\mathbb{Z}})$, and has trivial action. We rewrite this right hand side as

$$\begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & a^{-1} \end{pmatrix}_{p \nmid \mathcal{A}}$$

The right hand side of this acts trivially because the Fourier coefficients are in Z. Thus we get

$$f^{\sigma_{\mathcal{A}}^{-1}}(\tau) = f\left(\frac{\tau}{a}\right).$$

LECTURE 5 (ROSU)

6. CM FOR ELLIPTIC CURVES

Today we'll mainly talk about Hecke characters and the theorem of CM for elliptic curves.

Hecke Characters. Let K be a number field, and \mathbb{A}_K^{\times} the idéles. Recall the following definition.

Definition 32. A Hecke character is a continuous homomorphism

$$\chi: \mathbb{A}_K^\times / K^\times \to \mathbb{C}^\times$$

We write this as $\chi = \otimes_v \chi_v$, where $\chi_v : K_v^{\times} \to \mathbb{C}^{\times}$ is the restriction to the component at the place v. χ has conductor \mathfrak{f} which is the smallest ideal such that $\chi_v(1 + \mathfrak{f}\mathcal{O}_v) = 1$ for all v.

Remark 33. We can think of Hecke characters classically as

$$\chi: I(\mathfrak{f}) \to \mathbb{C}^{\times},$$

where the domain here is the ideals prime to \mathfrak{f} , with some infinity type (that is, a continuous character $\chi_{\infty}: K_{\infty} = K \otimes_{\mathbb{Q}} \mathbb{R} = \prod_{v \mid \infty} K_v^{\times} \to \mathbb{C}^{\times}$).

Example 34. If $K = \mathbb{Q}(\sqrt{-D})$ an imaginary quadratic field, $\chi_{\infty} : \mathbb{C}^{\times} \to \mathbb{C}^{\times}$ is some continuous homomorphism and for $\alpha \equiv 1 \mod \mathfrak{f} = \mathfrak{f}_{\chi}$ we have

$$\chi(\langle \alpha \rangle) = \chi_{\infty}(\alpha)^{-1}$$

Remark 35. If $\chi_{\infty} = 1$ then we have

$$\chi: I(\mathfrak{f})/\mathcal{P}_{1,\mathfrak{f}} \cong \operatorname{Gal}(H_{(\mathfrak{f})}/K) \to \mathbb{C}^{\times}$$

where $H_{(\mathfrak{f})}/K$ is the ray class field for \mathfrak{f} . Note that this is a character on a finite group!

We are interested in $\chi_{\infty}(z) = N_{K/\mathbb{Q}}(z)^{-1} = |z|^{-2}$, which will correspond to elliptic curves.

Remark 36. The two definitions correspond as follows: if $\chi : \mathbb{A}_K^{\times}/K^{\times} \to \mathbb{C}^{\times}$ with conductor \mathfrak{f} is as in the first definition then it corresponds to $\tilde{\chi} : I(\mathfrak{f}) \to \mathbb{C}^{\times}$ where for a prime $\mathfrak{p} \nmid \mathfrak{f}$ we take

$$\tilde{\chi}(\mathfrak{p}) := \chi_{\mathfrak{p}}(\pi_{\mathfrak{p}}),$$

where $\pi_{\mathfrak{p}}$ is a uniformizer in $K_{\mathfrak{p}}$, and for the infinite part we take

$$\tilde{\chi}_{\infty}(z) := \chi_{\infty}(z).$$

Going back the way we take $\tilde{\chi}: I(\mathfrak{f})/P_{1,\mathfrak{f}} \to \mathbb{C}^{\times}$ to the character χ with for $\mathfrak{p} \nmid \mathfrak{f}$

$$\chi_{\mathfrak{p}}(\mathcal{O}_{\mathfrak{p}}^{\times}) = 1$$
$$\chi_{\mathfrak{p}}(\pi_{\mathfrak{p}}) = \tilde{\chi}(\mathfrak{p})$$

and at $v = \infty$ we take $\chi_{\infty} = \tilde{\chi}_{\infty}$.

Example 37 (Dirichlet Characters). $\chi_{Dir} : \mathbb{Z}/N\mathbb{Z}^{\times} \to \mathbb{C}^{\times}$ given by $m \mod N \mapsto \zeta^m$, where ζ is an Nth root of unity. Then this corresponds to

$$\begin{split} \chi: I_{\mathbb{Q}}(N) \to \mathbb{C}^{\times} \\ \langle p \rangle \mapsto \chi(p \mod N) \end{split}$$

If χ_{Dir} is primitive then the conductor of χ is N. Note that the associated character on the idéles is, for $p \nmid N$:

$$\begin{split} \tilde{\chi} &: \mathbb{A}_{\mathbb{Q}}^{\times} \to \mathbb{C}^{\times} \\ \tilde{\chi}_p(p) &= \chi(p \mod N) \\ \tilde{\chi}_{\infty}(z) &= 1. \end{split}$$

Example 38. $K = \mathbb{Q}(\sqrt{-3})$, which is a PID. Then define

$$\varphi: I(3) \to \mathbb{C}^{\times}$$

by $\varphi(\langle \alpha \rangle) = \alpha$ for $\alpha \equiv 1 \mod 3$, and let $\varphi_{\infty}(x) = z^{-1}$. This corresponds to $E: y^2 = x^3 - 432 \leftrightarrow x^3 + y^3 = 1$.

6.1. Elliptic Curves with CM. Goal: Finda Hecke character corresponding to $\chi_E.$

Recall from Vonk's lectures

(1) If E/L has CM then $j(E) \in \overline{\mathbb{Z}}$, which is then equivalent to E having potential good reduction at all places of L (meaning that all reduction is either good or additive which becomes good over a finite extension). We

have $L_p(E, s) = \begin{cases} \text{good reduction terms} \\ 1 \text{ add reduction} \end{cases}$

- (2) If $K = \mathbb{Q}(\sqrt{-D})$ is imaginary quadratic, and $\mathfrak{a} \leq \mathcal{O}_K$ is an ideal, then there is an associated elliptic curve $E = E_{\mathfrak{a}}$ with

$$E_{\mathfrak{a}}(\mathbb{C}) = \mathbb{C}/\mathfrak{a}$$

Let H/K be the Hilbert class field, then in fact we have $E_{\mathfrak{a}}/H$. Moreover

$$E_{\text{tors}} \cong K/\mathfrak{a}.$$

We have an action of $s \in \mathbb{A}_K^{\times}$ on E_{tors}

$$\oplus_{\mathfrak{p}} K_{\mathfrak{p}}/\mathfrak{a}_{\mathfrak{p}} \xleftarrow{\alpha}{\sim} K/\mathfrak{a} \xrightarrow{\cdot s} K/s^{-1}\mathfrak{a} \xrightarrow{\sim} \oplus_{\mathfrak{p}} K_{\mathfrak{p}}/s_{\mathfrak{p}}^{-1}\mathfrak{a}_{\mathfrak{p}} \ ,$$

where $\alpha : k \mod \mathfrak{a} \mapsto k \mod fa_{\mathfrak{p}}$.

We now state the main theorem of CM.

Theorem 39 (Main Theorem of CM). Using the Artin Reciprocity map

$$\mathbb{A}_K^{\times}/K^{\times} \to \operatorname{Gal}(K^{\operatorname{ab}}/K),$$

where we denote the image of s by σ_s , then the Galois action on E_{tors} is given by multiplication by idéles:

where $L = \mathbb{Q}(j(E))$, and we think of the top row as 'analytic' and the bottom as 'algebraic'.

6.2. Hecke Characters for CM Elliptic Curves.

Theorem 40 (Deuring). If E/L has CM by \mathcal{O}_K and $K \subsetneq L$ then we can find a Hecke character

$$\chi_E: \mathbb{A}_{L'}^{\times}/L'^{\times} \to \mathbb{C}^{\times},$$

where L' = LK is the compositum, such that

$$L(E/L', s) = L(s, \chi_E).$$

Remark 41. If \mathfrak{p} is a prime of L then

$$L_{\mathfrak{p}}(E/L',s) = \prod_{\mathfrak{q}|\mathfrak{p}} L_{\mathfrak{q}}(s,\chi_{\mathfrak{q}}).$$

Moreover we have the following.

• Bad reduction corresponds to $\mathfrak{p} \mid \mathfrak{f}$ (where \mathfrak{f} is the conductor $f \chi_E$).

• Good reduction corresponds to 1 on both sides. Generally this is saying

$$1 - a_{\mathfrak{p}}q^{-s} + q^{1-2s} = \prod_{\mathfrak{q}|\mathfrak{p}} (1 - \chi_E(\mathfrak{q})N(\mathfrak{q})^{-s}),$$

where $q = N(\mathfrak{p})$.

Remark 42. If $K \subset L$ then $\chi_E : \mathbb{A}_L^{\times}/L^{\times} \to K^{\times}$, and $L(E/L', s) = L(s, \chi_E)L(s, \overline{\chi_E}).$

6.3. (Idea of) Construction. The idea of the construction of $\chi_E : \mathbb{A}_L^{\times}/L^{\times} \to \mathbb{C}^{\times}$ in the case $K \subset L$ is as follows.

(1) Construct a homomorphism

$$\alpha_E : \mathbb{A}_L^{\times} \to \mathbb{A}_K^{\times} \to K^{\times}$$
$$x \mapsto N_{L/K}(x) = s \mapsto ?$$

Recall for E/L with $j(E) \in L$ the diagram from the main theorem of CM:

,

$$\begin{array}{ccc} K/\mathfrak{a} & & \xrightarrow{s^{-1}} & K/s^{-1}\mathfrak{a} \\ & & & \downarrow \\ E(L^{\mathrm{ab}}) & \xrightarrow{\sigma_s} & E^{\sigma_s}(L^{\mathrm{ab}}) = E(L^{\mathrm{ab}}) \end{array}$$

and note that $s \in N_{L/K} \mathbb{A}_L^{\times} / L^{\times}$ if and only if σ_s preserves L, since

$$\mathbb{A}_L^{\times}/N_{L/K}\mathbb{A}_K^{\times}/K^{\times} \cong \operatorname{Gal}(L/K).$$

Thus the bottom line above is an isomorphism and we have that \mathfrak{a} and $s^{-1}\mathfrak{a}$ must be homothetic lattices.

(2)
$$\chi_E = \alpha_E \cdot (N_{L/K})_{\infty}^{-1}$$

Remark 43. Assume E/H where H is the Hilbert class field of K and E has CM by \mathcal{O}_K . Then

- (1) $\chi_E : \mathbb{A}_H^{\times}/H^{\times} \to K^{\times}$ determines the isogeny class of E/H.
- (2) $(\chi_E, j(E))$ determines the isomorphism class of E/H.
- (3) A Hecke character $\chi : \mathbb{A}_H/H^{\times} \to \mathbb{C}^{\times}$ correspond to E/H with CM by \mathcal{O}_K if and only if $\chi_{\infty} = (N_{L/K}^{-1})_{\infty}$