
COMPLEX MULTIPLICATION

COURSE: EUGENIA ROSU AND JAN VONK
NOTES: ROSS PATERSON

Disclaimer. These notes were taken live during lectures at the Spring School
on Arithmetic Statistics held at CIRM from 8th–12th May 2023. Any mistakes
are the fault of the transcriber and not of the lecturer, they have not been
proofread in any meaningful way.

In general,
∑′ means take the sum excluding the obvious elements which are

not defined (typically 0’s)

Lecture 1 (Jan Vonk)
We begin, very classically, with a viewpoint due to Eisenstein. Forget everything
you know about trigonometric functions!

1. Cyclotomy

Consider Z ⊆ R, and think about the quotient R/Z which we usually think of as
the circle group. We’d like to think of this quotient algebraically.

To do this we shall look at the invariant functions for k ≥ 2

αk(z) =
∑
λ∈Z

1

(z − λ)k
.

Many polynomial relations exist between these (for example α2
2 = α4 + Ω2α2) with

coeficients equal to combinations of

Ωk :=
∑
λ∈Z′

1

λk
.

There are extra terms to add:
• Consider the case k = 1, and define in pretty much the same way

α1(z) :=
1

z
+
∑
λ∈Z′

1

z − λ
+

1

λ
.

1
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This is absolutely convergent (unlike what we would have had if we hadn’t
modified for k = 1) and is translation invariant. It satisfies the relation

(1) α2
1 = α2 − 3Ω2.

• We want a multiplicative lift for

d log /dz : f 7→ f ′/f

for our function α1. We take

S(z) := πz
∏
λ∈Z′

(
1− z

λ

)
exp

( z
λ

)
,

and note that we can prove formally the following two identities:

(d log /dz)(S) = S′(z)/S(z) = α1(z)

S(z + 1) = −S(z)

1.1. Periods. Euler realised that

S(z) = sin(πz),

so that

α1(z) =
1

z
−
∑
k≥2

Ωkz
k−1

= π cot(πz)

= −πi(e2πiz + 1)/(e2πiz − 1).

From this we deduce that for k ≥ 2

Ωk =
(2π)k

k!
|Bk|

where Bk are Bernoulli numbers. This leads us nicely on to special values.

1.2. Special Values. Consider the set of vaues at division points of R/Z, i.e.
z ∈ Q/Z.

We have the Chebyshev polynomials

Tn(cos(θ)) = cos(nθ),

so find that the values of σ(z) at division points are algebraic.

Example 1. Consider z = 2/17, then we get 1
2n (ζ17 − ζ−1

17 ) ∈ Q(ζ68) =: K. It is
half of a 17-unit, i.e. it is half of an element in OK [1/17]×.
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2. Elliptic Functions

Consider a rank 2 lattice Λ = Zω1 + Zω2 ⊆ C
Again, we want to find invariant functions. For k ≥ 3 we define

αk(Λ, z) =
∑
λ∈Λ

1

(z − λ)k
.

Outside the range of convergence we define as follows.
• for k = 2 we write

α2(Λ, z) =
1

z2
+
∑
λ∈Λ′

(
1

(z − λ)2
− 1

λ2

)
,

which is usually known as the Weierstrass ℘-function. This is an invariant
function.

• For k = 1 we define

α2(Λ, z) =
1

z
+
∑
λ∈Λ′

(
1

(z − λ)
+

1

λ
+

z

λ2

)
.

This is often called the Weierstrass ζ-function, but it is NOT invariant!
We have a transformation law:

α1(Λ, z + ωi) = α1(Λ, z) + ηi.

We have multiplicative lifts given by

σ(Λ, z) := z
∏
λ∈Λ′

(
1− z

λ

)
exp

(
z

λ
+

z2

2λ2

)
,

and it satisfies

(d log /dz)(σ) = σ′(z)/σ(z) = α1(Λ, z)

σ(Λ, z + ωi) = − exp
(
ηi

(
z +

ωi
2

))
σ(Λ, z)
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2.1. Special Values. The Values at division points of C/Λ
We will study values at division points when Λ has complex multiplication, i.e.

{α ∈ C : αΛ ⊆ Λ} ) Z.

We will look at:
(1) singular moduli, e.g. the j-invariant j(Λ) = (60Ω4(Λ))3

(60Ω4(Λ))3−(140Ω6(Λ))62 ;
(2) elliptic units, i.e. quotients of σ-functions (Klein forms), for example

(∆|γ)/∆

for γ ∈M2(Z) and ∆ the usual Ramanujan modular form.
Some remarks on CM theory:

• Heegner (1952) used CM theory to construct integral points on modular
curves Xns(p), solving the class number 1 problem for imaginary quadratic
fields.

• Coates–Wiles (1976) used elliptic units to prove the Birch–Swinnerton-Dyer
conjecture in the analytic rank 0 case.

• Gross–Zagier (1985) determine factorisation of (differences of) singular mod-
uli to obtain the Birch–Swinnerton-Dyer conjecture in the analytic rank 1
case.

Lecture 2 (Vonk)
Today: Special values at CM lattices Λ = α 〈1, τ〉 of

j(q) : =

(
1 + 240

∑
g≥1

n3qn

1−qn

)
q
∏
n≥1(1− qn)24

=
1

q
+ 744 + 196884q + 21493760q2 + · · · ∈ q−1Z[[q]],

as well as of (∆|γ)/∆ for γ ∈M2(Z) with det(γ) = p.
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Notation 2. Pick coset representatives for

SL2(Z)\ {γ ∈M2(Z) : det(γ) = p} =: Mp,

by setting (for j ∈ {0, . . . , p− 1})

γj : =

(
1 j
0 p

)
γ∞ : =

(
p 0
0 1

)

3. Singular Moduli

Theorem 3. There exist Φp(x, y) ∈ Z[x, y] such that

Φp(x, j(τ)) =
∏
γ∈Mp

(x− j(γτ)) = P(x).

It satisfies Φp(x, y) = Φp(y, x), and the leading coefficient Φp(x, y) = ±1.

Proof. Coefficients ai of P(x) are:
• holomorphic on h = {z ∈ C : =(z) > 0}; and
• SL2(Z)-invariant; and
• meromorphic.

In particular they are in C[j]. Note that exp
(

2πi
(
τ+j
p

))
= ζjpq

1/p so as q-series
in q−1Z[ζp][[q]] the coefficients are invariant under Gal(Q(ζp)/Q). Thus they are in
Z[j].

Th leading term of j(τ) − j(γτ) is a root of unity. Thus the leading term of
Φp(x, x) must be an integer root of unity, meaning that it must be ±1. �

Example 4 (Very Large). See the webpage of Drew Sutherland for many excellent
huge examples. Here is a small-ish one.

Φ2(x, x) = (x− 8000)(x+ 3375)2(x− 1728)

Φ3(x, x) = x(x− 2653)(x+ 215)2(x− 243353)

Φ5(x, x) = (x2 − 275379x− 21253113)(degree 8 factor)

Let O be an imaginary quadratic order, a ≤ O a proper ideal, and p be a prime
number such that pO = pp with p principal (this is a positive density choice by
Chebotarev). Then

pa ⊂ a

is of index p and j(pa) = j(a) so j(a) is a root of Φp(x, x), so is an algebraic integer.

Example 5.

j(
√
−1) = 1728

j(
√
−2) = 8000

j

(
1 +
√
−7

2

)
= −3375
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Moreover j(
√
−5) is a root of Φ5(x). Here is a riddle: j

(
1+
√
−63

2

)
= −2183353233293 ∈

Z, which polynomial should give this? The answer is 41, try to see this.

Theorem 6 (Kronecker’s congruence).

Φp(x, y) ≡ (xp − y)(x− yp) mod p

Proof. Note that exp
(

2πi τ+j
p

)
= ζjpq

1/p ≡ q1/p mod ζp − 1, so that

Φp(x, j) ≡ (x− j(q1/p))p(x− j(qp)) mod (ζp − 1)

≡ (xp − j(q))(x− j(q)p)

�

For any pO = pp we have

(j(a)p − j(ap))(j(ap)p − j(a)) mod p.

Want: We want to prove that this first factor is in fact ≡ 0 mod p.

4. Some Elliptic Units

Definition 7. For all γ =

(
a b
c d

)
∈Mp, define

hγ := (∆|γ)/∆ := det(γ)12(cτ + d)−12 ∆(γτ)

δ(τ)
.

Theorem 8. There exists Υp(x, y) ∈ Z[x, y] such that

Υ(x, j(τ)) =
∏
γ∈Mp

(x− hγ(τ)).

It satisfies
Υ(0, y) = p12

Proof. This is in the exercises. �

Example 9. We have

Υ2(x, y) = (x+ 16)3 − xy,
Υ3(x, y) = (x− 9)3(x− 729) + 72x(x+ 21)y − xy2.

We see that, for O an imaginary quadratic order and a ⊂ O a proper ideal,
hγ(a) ∈ Z. Unfortunately they have no rich prime factorisations, as the next
theorem makes precise.

Theorem 10. Suppose pO = pp is a proper ideal, then〈
hγ(p)(a)

〉
= p12

and 〈
hγ(p)

〉
(a) = p12,

where γ(p) ∈Mp relates the bases of a and pa, and hγ(a) is a unit if γ 6= γ(p)γ(p)

Why is this theorem true? We can make it follow from the previous one.
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Proof. Let f be such that pf = 〈α〉 is principal. Then〈(
p12 ∆(pfa)

∆(pf−1a)

)(
p12 ∆(pf−1a)

∆(pf−2a)

)
. . .

(
p12 ∆(pa)

∆(a)

)〉
=
〈
p12fα−12

〉
= p12f .

Then, writing λi =
(
p12 ∆(pia)

∆(pi−1a)

)
, we have each λi ∈ Z and divides p12 + 〈p〉12

=

p12, and 〈λ1 . . . λf 〉 = p12. Thus 〈λi〉 = p12.
Theorem now follows from

hγ(p)(a)hγ(p)(a)
∏

γ 6=γ(p),γ(p)

hγ(a) ≡ ±p12

�

Lecture 3 (Vonk)
Last time we defined two different kinds of algebraic integers:

(1) Singular moduli j(a), for example

j

(
1 +
√
−67

2

)
= −2153353113

(2) (some) Elliptic units hγ(a), where γ ∈M2(Z) with det(γ) = p a prime.

Example 11. hγ(
√
−14) =

(√
2+1+

√
2
√

2−1
)12

26 for γ =

(
1 0
0 2

)
.

Theorem 12. There exists Gp ∈ Z[x, y, z] such that

Gp(x, y, j(τ)) =
∑
γ∈Mp

(x− j(γτ))
∏
δ 6=γ

(y − hδ).

It satisfies
Gp(zp, y, z) ≡ 0 mod p

Proof. Since exp
(

2πi
(
τ+j
p

))
= ζjpq

1/p ∼= q1/p mod ζp − 1, we find that

j (γ0τ) ≡ j (γ1τ) ≡ · · · ≡ j (γp−1τ) mod ζp − 1

and
hγ0 ≡ hγ1 ≡ · · · ≡ hγp−1

mod ζp − 1.

So it follows that

Gp(x, y, j(τ)) ≡ (x− j(qp)) (y − hγ0)
p

+ p
(
x− j(q1/p)

)
(y − hγ∞)(y − hγ0)p−1 mod ζp − 1

as required. �

Why did we do this? Because it buys us a refinement of Kroneckers congruence!

Theorem 13. Let O ⊂ K be an imaginary quadratic order, pO = pp proper, a ⊂ O
proper, then

j(a)p ∼= j(ap) mod p.
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Proof. Substitute (x, y, z) = (j(a)p, hγ(p)(a), j(a)) into Gp above. This gives

(j(a)p − j(ap))
∏

γ 6=γ(p)

(hγ(p)(a)− hγ(a)) ≡ 0 mod p

However the product is never 0 mod p, so the leading factor must be 0 mod p. �

Corollary 14. Suppose that a ⊂ O is a proper ideal in an imaginary quadratic
order in the quadratic field K. Then K(j(a)) is the ring class field of O.

Remark 15. The ring class field ofO is the finite abelian extensionHO/K associated
by class field theory to

Cl(O) ∼= C×Õ×\A×K/K
×

Proof. We will sketch one direction, and leave the other as an exercise. Let L =
HO/K be the ring class field. Then take any split prime pO = pp coprime to
disc(O), such that [OM : OK [j(a)]] where M = K(j(a)).

Then p splits completely in L/Q if and only if p is a principal prime of O. In
particular, j(a) = j(pa) ≡ j(a)p mod p and similarly if we swap p and p. Thus p
splits completely in K(j(a)) = M . It follows from Chebotaryov that M ⊂ L.

Exercise 16. Do the following
(1) Show that also L ⊂M using similar ideas, concluding the proof.
(2) Show that hγ(a) ∈ L.

�

Specialising to O = OK being maximal, we find the following corollary.

Corollary 17. Let a ⊂ OK be a proper ideal, then a12 becomes principal in the
Hilbert class field H/K.

Remark 18. This is a weaker in comparison to the principal ideal theorem, but it
does give an explicit generator!

Definition 19. The Dedeking eta function is

η(q) := q1/24
∏
n≥1

(1− qn),

where, as usual, q = e2πiτ .

Remark 20. Note that η24(q) = ∆(q), and it satisfies

η(τ + 1) = ζ24ζ(τ)

η(−1/τ) =
√
−iτη(τ).

where for the square root we are choosing the branch that is 1 on the imaginary
axis.

The special values at CM points relate to L-functions, by the Kronecker limit
formula. This formula is given as follows.

Definition 21. Consider real Eisenstein series

E(τ, s) :=

′∑
m,n∈Z

=(τ)s

|mτ + n|2s

for <(s) > 1.
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Theorem 22 (Kronecker Limit Formula).

E(τ, s) =
π

s− 1
+ 2π

(
c− log

(√
=(τ) |η(τ)|

)2
)

+O(s− 1).

Specialising to CM points, and using our previous results, we find

ζa(s) =
∑
b∼a

N(b)−s =
k

s− 1
+ c(a) +O(s− 1),

where c(a1)− c(a2) = log(u) for u ∈ O×H

Lecture 4 (Rosu)
We’ll pick up where Jan left off yesterday, and make the jump to the 20th century.

5. Shimura Reciprocity Law

Goal: Shimura reciprocity law.

5.1. Motivation. Let K = Q(
√
−D) for some D > 0 be an imaginary quadratic

field, let H be the hilber class field of K, let a ≤ OK be an ideal viewed as a lattice
in C. To this ideal we have an associated elliptic curve Ea such that

Ea(C) ∼= C/a.
The equation for this curve is given by

Ea : y2 = 4x3 − 27j(a)

j(a)− 1728
x− 27j(a)

j(a)− 1728
.

Moreover, j(a) ∈ H.

Theorem 23. If b ≤ OK is an ideal coprime to a, then

j(a)σ
−1
b = j(ab),

where σb ∈ Gal(H/K) is the element corresponding to the ideal class b via the Artin
map.

Remark 24. If a is a primitive ideal in OK ,

a =

〈
a,
−b+

√
−d

2

〉
Z

with

a = NK/Q(a)

b2 ≡ −D mod 4a.

Moreover

j(a) = j

(
−b+

√
−D

2a

)
.

Goal: Through a similar process, compute (f(τ))σ for f a modular function and
τ a CM point (Aτ2 +Bτ + C = 0 for A,B,C ∈ Z). We will connect:

(1) automorphism space of the space of modular functions F .
(2) Galois actions: the action of Gal(Kab/K) on f(τ) ∈ H ∩ K for τ a CM

point. By this we really many for x ∈ AK/K× we associate under the artin
map σx ∈ Gal(Kab/K) and

(f(τ))σx = fxτ (τ).
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5.2. Modular Functions. Let ζN = e2πi/N , and write X(N) for the modular
curve of level N over Q(ζN ). Note

X(N)C ∼= Γ(N)\H ∪ {cusps} ,

and the function field is

Q(ζN )(X(N)) =: FN = {modular functions of level N with fourier coefficients in Q(ζN )} .

Definition 25. Modular functions f : H → C are functions satisfying
(1) f is holomorphic on H;
(2) f is invariant under Γ(N), that is

f

(
az + b

cz + d

)
= f(z)

(3) f is ‘meromorphic at cusps’, roughly meaning that at ∞ the q-expansion
satisfies f(q) =

∑∞
n=−m anq

n/N , and similarly at the other cusps.

Example 26. In fact j ∈ F1. Moreover if f, g are modular forms of weight k and
level N then f/g ∈ FN .

(1) F1 = Q(X(1)) = Q(j);
(2) FN = Q(ζN ) = Q(j, f0,1, . . . , f1,0), where these fi,j are the ‘Fricke func-

tions’.

Theorem 27. FN/F1 is Galois and moreover

Gal(FN/F1) ∼= GL2(Z/NZ)/ {±1} .

Idea of proof. We give the idea. There are two actions in play.
(1) For f ∈ FN , we can construct a polynomial (much like in yesterdays lecture)

Pf (X) =
∏

A∈SL2(Z)/Γ(N)

(X − f(Az)) ∈ Q(ζN , j)[X].

Here A ∈ SL2(Z)/Γ(N) ∼= SL2(Z/NZ), and A · j = f(Az)
(2) Let σd ∈ Gal(Q(ζN )/Q) ∼= Z/NZ× be the automorphism such that ζN →

ζdN . Then

fσd(z) =

∞∑
n=−m

aσdn q
n/N .

We embed this in GL2(Z/NZ) via d 7→
(

1 0
0 d

)
Note that πI always acts trivially for both of these, which is where the quotient by
±1 is coming from. �

Let F = ∪N≥1FN , and then

Gal(F/F1) = lim
←

GL2(Z/NZ)/ {±1} = GL2(Ẑ)/ {±1} ,

where Ẑ =
∏
p-∞ Zp.

Goal: Find Aut(F). Note that F/Q is not Galois.
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Theorem 28 (Shimura). There is a short exact sequence

0 Q× GL2(Af ) Aut(F) 1,
γ

where Af =
∏′
p-∞Qp = AQ/R is the restricted direct product over only the finite

places, and the map γ is the diagonal embedding a 7→
(
a 0
0 a

)
.

Action of GL2(Af ) on F :

GL2(Af ) = GL2(Q+) ·GL2(Ẑ),

so write g ∈ GL2(Af ) as γu for γ ∈ GL2(Q+) and u ∈ GL2(Ẑ). Note that the
decomposition above is not unique but

fg = (fγ)u

is well defined. We then have actions of the subgroups via:
• GL2(Q+) acts by

fγ(z) = f(γz);

• GL2(Ẑ)→ GL2(Z/NZ) ∼= SL2(Z)/Γ(N) acts as before f 7→ fu.

5.3. Shimura Reciprocity Law. Recall that K = Q(
√
−D) for D > 0 is an

imaginary quadratic field, H the Hilber class field, and τ ∈ H ∩ K. We pick an
embedding

K∗ → GL2(Q)

k 7→ gτ (k),

where we choose

gτ (k)

(
τ
1

)
= k

(
τ
1

)
that is, it preserves

(
τ
1

)
∈ P1(C). Mutatis mutandis, we define an embedding

A×K → GL2(AQ),

where now gτ (x) =

(
t− aB/A −Cs/A

s t

)
where τ = s + tτ for s, t ∈ AQ and

Aτ2 +Bτ + C = 0 for some A,B,C ∈ Z.

Theorem 29 (Shimura). Let f ∈ F be a modular function, and τ ∈ H ∩K. For
x ∈ A×K ,

(f(τ))σ
−1
x = fgτ (x)(τ),

where:
• σx ↔ x via the Artin map A×K → Gal(Kab/K);
• gτ (x) ∈ Aut(F).

Remark 30. f(τ) ∈ Kab, and by the theorem we know what the Galois conjugates
are.
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Example 31. Consider K = Q(
√
−3), this is a PID, and let f ∈ FN with integer

coefficients. Take a primitive ideal

A =

〈
a,
−b+

√
−3

2

〉
Z
,

where again a = NK/Q(A) and b2 ≡ −3 mod 4.

Claim: f(τ)σ
−1
A = f

(
−b+
√
−3

2

)
proof. σA = σx, where(

ta+ s
−b+

√
−3

2

)
= A ↔

(
ta+ s

−b+
√
−3

2

)
v|A
∈ A×K .

• The minimal polynomial for τ is

X2 + bX +
b2 + 3

4
= 0.

Then gτ (x) =

(
ta− sb −sca
s ta

)
p|A

, where 4ac = b2+3
4 .

Shimura reciprocity gives

f(τ)σ
−1
x = fgτ (x)(τ).

What we do is first write this as a product, that is you can compute that

gτ (x) =

(
ta− sb −sc
s t

)
p|A

(
1 0
0 a

)
p|A

.

It is easy to see that the left hand term is in SL2(Ẑ), and has trivial action. We
rewrite this right hand side as(

1 0
0 a

)(
1 0
0 a−1

)
p-A

.

The right hand side of this acts trivially because the Fourier coefficients are in Z.
Thus we get

fσ
−1
A (τ) = f

(τ
a

)
.

Lecture 5 (Rosu)

6. CM for Elliptic Curves

Today we’ll mainly talk about Hecke characters and the theorem of CM for
elliptic curves.

Hecke Characters. Let K be a number field, and A×K the idéles. Recall the
following definition.

Definition 32. A Hecke character is a continuous homomorphism

χ : A×K/K
× → C×.

We write this as χ = ⊗vχv, where χv : K×v → C× is the restriction to the com-
ponent at the place v. χ has conductor f which is the smallest ideal such that
χv(1 + fOv) = 1 for all v.
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Remark 33. We can think of Hecke characters classically as

χ : I(f)→ C×,

where the domain here is the ideals prime to f, with some infinity type (that is, a
continuous character χ∞ : K∞ = K ⊗Q R =

∏
v|∞K×v → C×).

Example 34. If K = Q(
√
−D) an imaginary quadratic field, χ∞ : C× → C× is

some continuous homomorphism and for α ≡ 1 mod f = fχ we have

χ(〈α〉) = χ∞(α)−1

Remark 35. If χ∞ = 1 then we have

χ : I(f)/P1,f
∼= Gal(H(f)/K)→ C×,

where H(f)/K is the ray class field for f. Note that this is a character on a finite
group!

We are interested in χ∞(z) = NK/Q(z)−1 = |z|−2, which will correspond to
elliptic curves.

Remark 36. The two definitions correspond as follows: if χ : A×K/K× → C× with
conductor f is as in the first definition then it corresponds to χ̃ : I(f)→ C× where
for a prime p - f we take

χ̃(p) := χp(πp),

where πp is a uniformizer in Kp, and for the infinite part we take

χ̃∞(z) := χ∞(z).

Going back the way we take χ̃ : I(f)/P1,f → C× to the character χ with for p - f

χp(O×p ) = 1

χp(πp) = χ̃(p)

and at v =∞ we take χ∞ = χ̃∞.

Example 37 (Dirichlet Characters). χDir : Z/NZ× → C× given by m mod N 7→
ζm, where ζ is an Nth root of unity. Then this corresponds to

χ : IQ(N)→ C×

〈p〉 7→ χ(p mod N).

If χDir is primitive then the conductor of χ is N . Note that the associated character
on the idéles is, for p - N :

χ̃ : A×Q → C×

χ̃p(p) = χ(p mod N)

χ̃∞(z) = 1.

Example 38. K = Q(
√
−3), which is a PID. Then define

ϕ : I(3)→ C×,

by ϕ(〈α〉) = α for α ≡ 1 mod 3, and let ϕ∞(x) = z−1. This corresponds to
E : y2 = x3 − 432↔ x3 + y3 = 1.
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6.1. Elliptic Curves with CM. Goal: Finda Hecke character corresponding to
χE .

Recall from Vonk’s lectures
(1) If E/L has CM then j(E) ∈ Z, which is then equivalent to E having

potential good reduction at all places of L (meaning that all reduction is
either good or additive which becomes good over a finite extension). We

have Lp(E, s) =

{
good reduction terms
1 add reduction

(2) If K = Q(
√
−D) is imaginary quadratic, and a ≤ OK is an ideal, then

there is an associated elliptic curve E = Ea with

Ea(C) = C/a.
Let H/K be the Hilbert class field, then in fact we have Ea/H. Moreover

Etors ∼= K/a.

We have an action of s ∈ A×K on Etors

⊕pKp/ap K/a K/s−1a ⊕pKp/s
−1
p ap∼

α ·s ∼ ,

where α : k mod a 7→ k mod fap.
We now state the main theorem of CM.

Theorem 39 (Main Theorem of CM). Using the Artin Reciprocity map

A×K/K
× → Gal(Kab/K),

where we denote the image of s by σs, then the Galois action on Etors is given by
multiplicationby idéles:

Etors ∼= K/a K/s−1a

E(Lab) Eσs(Lab)

s−1

σs
,

where L = Q(j(E)), and we think of the top row as ‘analytic’ and the bottom as
‘algebraic’.

6.2. Hecke Characters for CM Elliptic Curves.

Theorem 40 (Deuring). If E/L has CM by OK and K ( L then we can find a
Hecke character

χE : A×L′/L
′× → C×,

where L′ = LK is the compositum, such that

L(E/L′, s) = L(s, χE).

Remark 41. If p is a prime of L then

Lp(E/L′, s) =
∏
q|p

Lq(s, χq).

Moreover we have the following.
• Bad reduction corresponds to p | f (where f is the conductor f χE).
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• Good reduction corresponds to 1 on both sides.
Generally this is saying

1− apq−s + q1−2s =
∏
q|p

(1− χE(q)N(q)−s),

where q = N(p).

Remark 42. If K ⊂ L then χE : A×L/L× → K×, and

L(E/L′, s) = L(s, χE)L(s, χE).

6.3. (Idea of) Construction. The idea of the construction of χE : A×L/L× → C×
in the case K ⊂ L is as follows.

(1) Construct a homomorphism

αE : A×L → A×K → K×

x 7→ NL/K(x) = s 7→?

Recall for E/L with j(E) ∈ L the diagram from the main theorem of CM:

K/a K/s−1a

E(Lab) Eσs(Lab) = E(Lab)

s−1

σs
,

and note that s ∈ NL/KA×L/L× if and only if σs preserves L, since

A×L/NL/KA×K/K
× ∼= Gal(L/K).

Thus the bottom line above is an isomorphism and we have that a and s−1a
must be homothetic lattices.

(2) χE = αE · (NL/K)−1
∞

Remark 43. Assume E/H where H is the Hilbert class field of K and E has CM
by OK . Then

(1) χE : A×H/H× → K× determines the isogeny class of E/H.
(2) (χE , j(E)) determines the isomorphism class of E/H.
(3) A Hecke character χ : AH/H× → C× correspond to E/H with CM by OK

if and only if χ∞ = (N−1
L/K)∞
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