COMPLEX MULTIPLICATION

COURSE: EUGENIA ROSU AND JAN VONK
NOTES: ROSS PATERSON

Abstract

Disclaimer. These notes were taken live during lectures at the Spring School on Arithmetic Statistics held at CIRM from $8^{\text {th }}-12^{\text {th }}$ May 2023. Any mistakes are the fault of the transcriber and not of the lecturer, they have not been proofread in any meaningful way.

In general, \sum^{\prime} means take the sum excluding the obvious elements which are not defined (typically 0's)

Lecture 1 (Jan Vonk)

We begin, very classically, with a viewpoint due to Eisenstein. Forget everything you know about trigonometric functions!

1. Cyclotomy

Consider $\mathbb{Z} \subseteq \mathbb{R}$, and think about the quotient \mathbb{R} / \mathbb{Z} which we usually think of as the circle group. We'd like to think of this quotient algebraically.

To do this we shall look at the invariant functions for $k \geq 2$

$$
\alpha_{k}(z)=\sum_{\lambda \in \mathbb{Z}} \frac{1}{(z-\lambda)^{k}}
$$

Many polynomial relations exist between these (for example $\alpha_{2}^{2}=\alpha_{4}+\Omega_{2} \alpha_{2}$) with coeficients equal to combinations of

$$
\Omega_{k}:=\sum_{\lambda \in \mathbb{Z}^{\prime}} \frac{1}{\lambda^{k}}
$$

There are extra terms to add:

- Consider the case $k=1$, and define in pretty much the same way

$$
\alpha_{1}(z):=\frac{1}{z}+\sum_{\substack{\lambda \in \mathbb{Z}^{\prime} \\ 1}} \frac{1}{z-\lambda}+\frac{1}{\lambda}
$$

This is absolutely convergent (unlike what we would have had if we hadn't modified for $k=1$) and is translation invariant. It satisfies the relation

$$
\begin{equation*}
\alpha_{1}^{2}=\alpha_{2}-3 \Omega_{2} \tag{1}
\end{equation*}
$$

- We want a multiplicative lift for

$$
\mathrm{d} \log / \mathrm{d} z: f \mapsto f^{\prime} / f
$$

for our function α_{1}. We take

$$
\mathfrak{S}(z):=\pi z \prod_{\lambda \in \mathbb{Z}^{\prime}}\left(1-\frac{z}{\lambda}\right) \exp \left(\frac{z}{\lambda}\right)
$$

and note that we can prove formally the following two identities:

$$
\begin{aligned}
(\mathrm{d} \log / \mathrm{d} z)(\mathfrak{S}) & =\mathfrak{S}^{\prime}(z) / \mathfrak{S}(z)=\alpha_{1}(z) \\
\mathfrak{S}(z+1) & =-\mathfrak{S}(z)
\end{aligned}
$$

1.1. Periods. Euler realised that

$$
\mathfrak{S}(z)=\sin (\pi z)
$$

so that

$$
\begin{aligned}
\alpha_{1}(z) & =\frac{1}{z}-\sum_{k \geq 2} \Omega_{k} z^{k-1} \\
& =\pi \cot (\pi z) \\
& =-\pi i\left(e^{2 \pi i z}+1\right) /\left(e^{2 \pi i z}-1\right)
\end{aligned}
$$

From this we deduce that for $k \geq 2$

$$
\Omega_{k}=\frac{(2 \pi)^{k}}{k!}\left|B_{k}\right|
$$

where B_{k} are Bernoulli numbers. This leads us nicely on to special values.
1.2. Special Values. Consider the set of vaues at division points of \mathbb{R} / \mathbb{Z}, i.e. $z \in \mathbb{Q} / \mathbb{Z}$.

We have the Chebyshev polynomials

$$
T_{n}(\cos (\theta))=\cos (n \theta)
$$

so find that the values of $\sigma(z)$ at division points are algebraic.
Example 1. Consider $z=2 / 17$, then we get $\frac{1}{2 n}\left(\zeta_{17}-\zeta_{17}^{-1}\right) \in \mathbb{Q}\left(\zeta_{68}\right)=$: K. It is half of a 17 -unit, i.e. it is half of an element in $\mathcal{O}_{K}[1 / 17]^{\times}$.

2. Elliptic Functions

Consider a rank 2 lattice $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2} \subseteq \mathbb{C}$
Again, we want to find invariant functions. For $k \geq 3$ we define

$$
\alpha_{k}(\Lambda, z)=\sum_{\lambda \in \Lambda} \frac{1}{(z-\lambda)^{k}}
$$

Outside the range of convergence we define as follows.

- for $k=2$ we write

$$
\alpha_{2}(\Lambda, z)=\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda^{\prime}}\left(\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right)
$$

which is usually known as the Weierstrass \wp-function. This is an invariant function.

- For $k=1$ we define

$$
\alpha_{2}(\Lambda, z)=\frac{1}{z}+\sum_{\lambda \in \Lambda^{\prime}}\left(\frac{1}{(z-\lambda)}+\frac{1}{\lambda}+\frac{z}{\lambda^{2}}\right) .
$$

This is often called the Weierstrass ζ-function, but it is NOT invariant! We have a transformation law:

$$
\alpha_{1}\left(\Lambda, z+\omega_{i}\right)=\alpha_{1}(\Lambda, z)+\eta_{i} .
$$

We have multiplicative lifts given by

$$
\sigma(\Lambda, z):=z \prod_{\lambda \in \Lambda^{\prime}}\left(1-\frac{z}{\lambda}\right) \exp \left(\frac{z}{\lambda}+\frac{z^{2}}{2 \lambda^{2}}\right)
$$

and it satisfies

$$
\begin{aligned}
(\mathrm{d} \log / \mathrm{d} z)(\sigma) & =\sigma^{\prime}(z) / \sigma(z)=\alpha_{1}(\Lambda, z) \\
\sigma\left(\Lambda, z+\omega_{i}\right) & =-\exp \left(\eta_{i}\left(z+\frac{\omega_{i}}{2}\right)\right) \sigma(\Lambda, z)
\end{aligned}
$$

2.1. Special Values. The Values at division points of \mathbb{C} / Λ

We will study values at division points when Λ has complex multiplication, i.e.

$$
\{\alpha \in \mathbb{C}: \alpha \Lambda \subseteq \Lambda\} \supsetneq \mathbb{Z}
$$

We will look at:
(1) singular moduli, e.g. the j-invariant $j(\Lambda)=\frac{\left(60 \Omega_{4}(\Lambda)\right)^{3}}{\left(60 \Omega_{4}(\Lambda)\right)^{3}-\left(140 \Omega_{6}(\Lambda)\right) 62}$;
(2) elliptic units, i.e. quotients of σ-functions (Klein forms), for example

$$
(\Delta \mid \gamma) / \Delta
$$

for $\gamma \in M_{2}(\mathbb{Z})$ and Δ the usual Ramanujan modular form.
Some remarks on CM theory:

- Heegner (1952) used CM theory to construct integral points on modular curves $X_{\mathrm{ns}}(p)$, solving the class number 1 problem for imaginary quadratic fields.
- Coates-Wiles (1976) used elliptic units to prove the Birch-Swinnerton-Dyer conjecture in the analytic rank 0 case.
- Gross-Zagier (1985) determine factorisation of (differences of) singular moduli to obtain the Birch-Swinnerton-Dyer conjecture in the analytic rank 1 case.

LECTURE 2 (VONK)
Today: Special values at CM lattices $\Lambda=\alpha\langle 1, \tau\rangle$ of

$$
\begin{aligned}
j(q): & =\frac{\left(1+240 \sum_{g \geq 1} \frac{n^{3} q^{n}}{1-q^{n}}\right)}{q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}} \\
& =\frac{1}{q}+744+196884 q+21493760 q^{2}+\cdots \in q^{-1} \mathbb{Z}[[q]]
\end{aligned}
$$

as well as of $\left(\left.\Delta\right|_{\gamma}\right) / \Delta$ for $\gamma \in M_{2}(\mathbb{Z})$ with $\operatorname{det}(\gamma)=p$.

Notation 2. Pick coset representatives for

$$
\mathrm{SL}_{2}(\mathbb{Z}) \backslash\left\{\gamma \in M_{2}(\mathbb{Z}): \operatorname{det}(\gamma)=p\right\}=: M_{p}
$$

by setting (for $j \in\{0, \ldots, p-1\}$)

$$
\begin{aligned}
\gamma_{j} & :=\left(\begin{array}{ll}
1 & j \\
0 & p
\end{array}\right) \\
\gamma_{\infty} & :=\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

3. Singular Moduli

Theorem 3. There exist $\Phi_{p}(x, y) \in \mathbb{Z}[x, y]$ such that

$$
\Phi_{p}(x, j(\tau))=\prod_{\gamma \in M_{p}}(x-j(\gamma \tau))=\mathcal{P}(x)
$$

It satisfies $\Phi_{p}(x, y)=\Phi_{p}(y, x)$, and the leading coefficient $\Phi_{p}(x, y)= \pm 1$.
Proof. Coefficients a_{i} of $\mathcal{P}(x)$ are:

- holomorphic on $\mathfrak{h}=\{z \in \mathbb{C}: \Im(z)>0\}$; and
- $\mathrm{SL}_{2}(\mathbb{Z})$-invariant; and
- meromorphic.

In particular they are in $\mathbb{C}[j]$. Note that $\exp \left(2 \pi i\left(\frac{\tau+j}{p}\right)\right)=\zeta_{p}^{j} q^{1 / p}$ so as q-series in $q^{-1} \mathbb{Z}\left[\zeta_{p}\right][[q]]$ the coefficients are invariant under $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)$. Thus they are in $\mathbb{Z}[j]$.

Th leading term of $j(\tau)-j(\gamma \tau)$ is a root of unity. Thus the leading term of $\Phi_{p}(x, x)$ must be an integer root of unity, meaning that it must be ± 1.

Example 4 (Very Large). See the webpage of Drew Sutherland for many excellent huge examples. Here is a small-ish one.

$$
\begin{aligned}
& \Phi_{2}(x, x)=(x-8000)(x+3375)^{2}(x-1728) \\
& \Phi_{3}(x, x)=x\left(x-2^{6} 5^{3}\right)\left(x+2^{15}\right)^{2}\left(x-2^{4} 3^{3} 5^{3}\right) \\
& \Phi_{5}(x, x)=\left(x^{2}-2^{7} 5^{3} 79 x-2^{12} 5^{3} 11^{3}\right)(\text { degree } 8 \text { factor) }
\end{aligned}
$$

Let \mathcal{O} be an imaginary quadratic order, $\mathfrak{a} \leq \mathcal{O}$ a proper ideal, and p be a prime number such that $p \mathcal{O}=\mathfrak{p p}$ with \mathfrak{p} principal (this is a positive density choice by Chebotarev). Then

$$
\mathfrak{p a} \subset \mathfrak{a}
$$

is of index \mathfrak{p} and $j(\mathfrak{p a})=j(\mathfrak{a})$ so $j(\mathfrak{a})$ is a root of $\Phi_{p}(x, x)$, so is an algebraic integer.

Example 5.

$$
\begin{aligned}
j(\sqrt{-1}) & =1728 \\
j(\sqrt{-2}) & =8000 \\
j\left(\frac{1+\sqrt{-7}}{2}\right) & =-3375
\end{aligned}
$$

Moreover $j(\sqrt{-5})$ is a root of $\Phi_{5}(x)$. Here is a riddle: $j\left(\frac{1+\sqrt{-63}}{2}\right)=-2^{18} 3^{3} 5^{3} 23^{3} 29^{3} \in$ \mathbb{Z}, which polynomial should give this? The answer is 41 , try to see this.

Theorem 6 (Kronecker's congruence).

$$
\Phi_{p}(x, y) \equiv\left(x^{p}-y\right)\left(x-y^{p}\right) \quad \bmod p
$$

Proof. Note that $\exp \left(2 \pi i \frac{\tau+j}{p}\right)=\zeta_{p}^{j} q^{1 / p} \equiv q^{1 / p} \bmod \zeta_{p}-1$, so that

$$
\begin{aligned}
\Phi_{p}(x, j) & \equiv\left(x-j\left(q^{1 / p}\right)\right)^{p}\left(x-j\left(q^{p}\right)\right) \quad \bmod \left(\zeta_{p}-1\right) \\
& \equiv\left(x^{p}-j(q)\right)\left(x-j(q)^{p}\right)
\end{aligned}
$$

For any $p \mathcal{O}=\mathfrak{p p}$ we have

$$
\left(j(\mathfrak{a})^{p}-j(\mathfrak{a p})\right)\left(j(\mathfrak{a p})^{p}-j(\mathfrak{a})\right) \quad \bmod p
$$

Want: We want to prove that this first factor is in fact $\equiv 0 \bmod \overline{\mathfrak{p}}$.

4. Some Elliptic Units

Definition 7. For all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{p}$, define

$$
h_{\gamma}:=(\Delta \mid \gamma) / \Delta:=\operatorname{det}(\gamma)^{12}(c \tau+d)^{-12} \frac{\Delta(\gamma \tau)}{\delta(\tau)}
$$

Theorem 8. There exists $\Upsilon_{p}(x, y) \in \mathbb{Z}[x, y]$ such that

$$
\Upsilon(x, j(\tau))=\prod_{\gamma \in M_{p}}\left(x-h_{\gamma}(\tau)\right)
$$

It satisfies

$$
\Upsilon(0, y)=p^{12}
$$

Proof. This is in the exercises.
Example 9. We have

$$
\begin{aligned}
& \Upsilon_{2}(x, y)=(x+16)^{3}-x y \\
& \Upsilon_{3}(x, y)=(x-9)^{3}(x-729)+72 x(x+21) y-x y^{2}
\end{aligned}
$$

We see that, for \mathcal{O} an imaginary quadratic order and $\mathfrak{a} \subset \mathcal{O}$ a proper ideal, $h_{\gamma}(\mathfrak{a}) \in \overline{\mathbb{Z}}$. Unfortunately they have no rich prime factorisations, as the next theorem makes precise.

Theorem 10. Suppose $p \mathcal{O}=\mathfrak{p p}$ is a proper ideal, then

$$
\left\langle h_{\gamma(\mathfrak{p})}(\mathfrak{a})\right\rangle=\overline{\mathfrak{p}}^{12}
$$

and

$$
\left\langle h_{\gamma(\overline{\mathfrak{p}})}\right\rangle(\mathfrak{a})=\mathfrak{p}^{12},
$$

where $\gamma(\mathfrak{p}) \in M_{p}$ relates the bases of \mathfrak{a} and $\mathfrak{p a}$, and $h_{\gamma}(\mathfrak{a})$ is a unit if $\gamma \neq \gamma(\mathfrak{p}) \gamma(\overline{\mathfrak{p}})$
Why is this theorem true? We can make it follow from the previous one.

Proof. Let f be such that $\mathfrak{p}^{f}=\langle\alpha\rangle$ is principal. Then

$$
\left\langle\left(p^{12} \frac{\Delta\left(\mathfrak{p}^{f} \mathfrak{a}\right)}{\Delta\left(\mathfrak{p}^{f-1} \mathfrak{a}\right)}\right)\left(p^{12} \frac{\Delta\left(\mathfrak{p}^{f-1} \mathfrak{a}\right)}{\Delta\left(\mathfrak{p}^{f-2} \mathfrak{a}\right)}\right) \ldots\left(p^{12} \frac{\Delta(\mathfrak{p a})}{\Delta(\mathfrak{a})}\right)\right\rangle=\left\langle p^{12 f} \alpha^{-12}\right\rangle=\overline{\mathfrak{p}}^{12 f}
$$

Then, writing $\lambda_{i}=\left(p^{12} \frac{\Delta\left(\mathfrak{p}^{i} \mathfrak{a}\right)}{\Delta\left(\mathfrak{p}^{i-1} \mathfrak{a}\right)}\right)$, we have each $\lambda_{i} \in \overline{\mathbb{Z}}$ and divides $\overline{\mathfrak{p}}^{12}+\langle p\rangle^{12}=$ $\overline{\mathfrak{p}}^{12}$, and $\left\langle\lambda_{1} \ldots \lambda_{f}\right\rangle=\overline{\mathfrak{p}}^{12}$. Thus $\left\langle\lambda_{i}\right\rangle=\overline{\mathfrak{p}}^{12}$.

Theorem now follows from

$$
h_{\gamma(\mathfrak{p})}(\mathfrak{a}) h_{\gamma(\overline{\mathfrak{p}})}(\mathfrak{a}) \prod_{\gamma \neq \gamma(\mathfrak{p}), \gamma(\overline{\mathfrak{p}})} h_{\gamma}(\mathfrak{a}) \equiv \pm p^{12}
$$

Lecture 3 (Vonk)

Last time we defined two different kinds of algebraic integers:
(1) Singular moduli $j(\mathfrak{a})$, for example

$$
j\left(\frac{1+\sqrt{-67}}{2}\right)=-2^{15} 3^{3} 5^{3} 11^{3}
$$

(2) (some) Elliptic units $h_{\gamma}(\mathfrak{a})$, where $\gamma \in M_{2}(\mathbb{Z})$ with $\operatorname{det}(\gamma)=p$ a prime.

Example 11. $h_{\gamma}(\sqrt{-14})=\frac{(\sqrt{2}+1+\sqrt{2 \sqrt{2}-1})^{12}}{2^{6}}$ for $\gamma=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$.
Theorem 12. There exists $\mathcal{G}_{p} \in \mathbb{Z}[x, y, z]$ such that

$$
\mathcal{G}_{p}(x, y, j(\tau))=\sum_{\gamma \in M_{p}}(x-j(\gamma \tau)) \prod_{\delta \neq \gamma}\left(y-h_{\delta}\right)
$$

It satisfies

$$
\mathcal{G}_{p}\left(z^{p}, y, z\right) \equiv 0 \quad \bmod p
$$

Proof. Since $\exp \left(2 \pi i\left(\frac{\tau+j}{p}\right)\right)=\zeta_{p}^{j} q^{1 / p} \cong q^{1 / p} \bmod \zeta_{p}-1$, we find that

$$
j\left(\gamma_{0} \tau\right) \equiv j\left(\gamma_{1} \tau\right) \equiv \cdots \equiv j\left(\gamma_{p-1} \tau\right) \quad \bmod \zeta_{p}-1
$$

and

$$
h_{\gamma_{0}} \equiv h_{\gamma_{1}} \equiv \cdots \equiv h_{\gamma_{p-1}} \quad \bmod \zeta_{p}-1
$$

So it follows that

$$
\begin{aligned}
\mathcal{G}_{p}(x, y, j(\tau)) \equiv & \left(x-j\left(q^{p}\right)\right)\left(y-h_{\gamma_{0}}\right)^{p} \\
& +p\left(x-j\left(q^{1 / p}\right)\right)\left(y-h_{\gamma_{\infty}}\right)\left(y-h_{\gamma_{0}}\right)^{p-1} \quad \bmod \zeta_{p}-1
\end{aligned}
$$

as required.
Why did we do this? Because it buys us a refinement of Kroneckers congruence!
Theorem 13. Let $\mathcal{O} \subset K$ be an imaginary quadratic order, $p \mathcal{O}=\mathfrak{p} \overline{\mathfrak{p}}$ proper, $\mathfrak{a} \subset \mathcal{O}$ proper, then

$$
j(\mathfrak{a})^{p} \cong j(\mathfrak{a} \overline{\mathfrak{p}}) \quad \bmod \mathfrak{p} .
$$

Proof. Substitute $(x, y, z)=\left(j(\mathfrak{a})^{p}, h_{\gamma(\overline{\mathfrak{p}})}(\mathfrak{a}), j(\mathfrak{a})\right)$ into \mathcal{G}_{p} above. This gives

$$
\left(j(\mathfrak{a})^{p}-j(\mathfrak{a p})\right) \prod_{\gamma \neq \gamma(\overline{\mathfrak{p}})}\left(h_{\gamma(\overline{\mathfrak{p}})}(\mathfrak{a})-h_{\gamma}(\mathfrak{a})\right) \equiv 0 \quad \bmod \mathfrak{p}
$$

However the product is never $0 \bmod \mathfrak{p}$, so the leading factor must be $0 \bmod \mathfrak{p}$.
Corollary 14. Suppose that $\mathfrak{a} \subset \mathcal{O}$ is a proper ideal in an imaginary quadratic order in the quadratic field K. Then $K(j(\mathfrak{a}))$ is the ring class field of \mathcal{O}.

Remark 15. The ring class field of \mathcal{O} is the finite abelian extension $H_{\mathcal{O}} / K$ associated by class field theory to

$$
\mathrm{Cl}(\mathcal{O}) \cong \mathbb{C}^{\times} \tilde{\mathcal{O}}^{\times} \backslash \mathbb{A}_{K}^{\times} / K^{\times}
$$

Proof. We will sketch one direction, and leave the other as an exercise. Let $L=$ $H_{\mathcal{O}} / K$ be the ring class field. Then take any split prime $p \mathcal{O}=\mathfrak{p p}$ coprime to $\operatorname{disc}(\mathcal{O})$, such that $\left[\mathcal{O}_{M}: \mathcal{O}_{K}[j(\mathfrak{a})]\right]$ where $M=K(j(\mathfrak{a}))$.

Then p splits completely in L / \mathbb{Q} if and only if \mathfrak{p} is a principal prime of \mathcal{O}. In particular, $j(\mathfrak{a})=j(\mathfrak{p a}) \equiv j(\mathfrak{a})^{p} \bmod \overline{\mathfrak{p}}$ and similarly if we swap \mathfrak{p} and $\overline{\mathfrak{p}}$. Thus p splits completely in $K(j(\mathfrak{a}))=M$. It follows from Chebotaryov that $M \subset L$.

Exercise 16. Do the following
(1) Show that also $L \subset M$ using similar ideas, concluding the proof.
(2) Show that $h_{\gamma}(\mathfrak{a}) \in L$.

Specialising to $\mathcal{O}=\mathcal{O}_{K}$ being maximal, we find the following corollary.
Corollary 17. Let $\mathfrak{a} \subset \mathcal{O}_{K}$ be a proper ideal, then \mathfrak{a}^{12} becomes principal in the Hilbert class field H / K.
Remark 18. This is a weaker in comparison to the principal ideal theorem, but it does give an explicit generator!
Definition 19. The Dedeking eta function is

$$
\eta(q):=q^{1 / 24} \prod_{n \geq 1}\left(1-q^{n}\right)
$$

where, as usual, $q=e^{2 \pi i \tau}$.
Remark 20. Note that $\eta^{24}(q)=\Delta(q)$, and it satisfies

$$
\begin{aligned}
\eta(\tau+1) & =\zeta_{24} \zeta(\tau) \\
\eta(-1 / \tau) & =\sqrt{-i \tau} \eta(\tau)
\end{aligned}
$$

where for the square root we are choosing the branch that is 1 on the imaginary axis.

The special values at CM points relate to L-functions, by the Kronecker limit formula. This formula is given as follows.
Definition 21. Consider real Eisenstein series

$$
E(\tau, s):=\sum_{m, n \in \mathbb{Z}}^{\prime} \frac{\Im(\tau)^{s}}{|m \tau+n|^{2 s}}
$$

for $\Re(s)>1$.

Theorem 22 (Kronecker Limit Formula).

$$
E(\tau, s)=\frac{\pi}{s-1}+2 \pi\left(c-\log (\sqrt{\Im(\tau)}|\eta(\tau)|)^{2}\right)+O(s-1)
$$

Specialising to CM points, and using our previous results, we find

$$
\zeta_{\mathfrak{a}}(s)=\sum_{\mathfrak{b} \sim \mathfrak{a}} N(\mathfrak{b})^{-s}=\frac{k}{s-1}+c(\mathfrak{a})+O(s-1)
$$

where $c\left(\mathfrak{a}_{1}\right)-c\left(\mathfrak{a}_{2}\right)=\log (u)$ for $u \in \mathcal{O}_{H}^{\times}$
Lecture 4 (Rosu)
We'll pick up where Jan left off yesterday, and make the jump to the 20th century.

5. Shimura Reciprocity Law

Goal: Shimura reciprocity law.
5.1. Motivation. Let $K=\mathbb{Q}(\sqrt{-D})$ for some $D>0$ be an imaginary quadratic field, let H be the hilber class field of K, let $\mathfrak{a} \leq \mathcal{O}_{K}$ be an ideal viewed as a lattice in \mathbb{C}. To this ideal we have an associated elliptic curve $E_{\mathfrak{a}}$ such that

$$
E_{\mathfrak{a}}(\mathbb{C}) \cong \mathbb{C} / \mathfrak{a} .
$$

The equation for this curve is given by

$$
E_{\mathfrak{a}}: y^{2}=4 x^{3}-\frac{27 j(\mathfrak{a})}{j(\mathfrak{a})-1728} x-\frac{27 j(\mathfrak{a})}{j(\mathfrak{a})-1728} .
$$

Moreover, $j(\mathfrak{a}) \in H$.
Theorem 23. If $\mathfrak{b} \leq \mathcal{O}_{K}$ is an ideal coprime to \mathfrak{a}, then

$$
j(\mathfrak{a})^{\sigma_{\mathfrak{b}}^{-1}}=j(\mathfrak{a b}),
$$

where $\sigma_{\mathfrak{b}} \in \operatorname{Gal}(H / K)$ is the element corresponding to the ideal class \mathfrak{b} via the Artin map.
Remark 24. If \mathfrak{a} is a primitive ideal in \mathcal{O}_{K},

$$
\mathfrak{a}=\left\langle a, \frac{-b+\sqrt{-d}}{2}\right\rangle_{\mathbb{Z}}
$$

with

$$
a=N_{K / \mathbb{Q}}(\mathfrak{a})
$$

$$
b^{2} \equiv-D \quad \bmod 4 a
$$

Moreover

$$
j(\mathfrak{a})=j\left(\frac{-b+\sqrt{-D}}{2 a}\right) .
$$

Goal: Through a similar process, compute $(f(\tau))^{\sigma}$ for f a modular function and τ a CM point $\left(A \tau^{2}+B \tau+C=0\right.$ for $\left.A, B, C \in \mathbb{Z}\right)$. We will connect:
(1) automorphism space of the space of modular functions \mathcal{F}.
(2) Galois actions: the action of $\operatorname{Gal}\left(K^{\mathrm{ab}} / K\right)$ on $f(\tau) \in H \cap K$ for τ a CM point. By this we really many for $x \in \mathbb{A}_{K} / K^{\times}$we associate under the artin $\operatorname{map} \sigma_{x} \in \operatorname{Gal}\left(K^{\mathrm{ab}} / K\right)$ and

$$
(f(\tau))^{\sigma_{x}}=f^{x_{\tau}}(\tau)
$$

5.2. Modular Functions. Let $\zeta_{N}=e^{2 \pi i / N}$, and write $X(N)$ for the modular curve of level N over $\mathbb{Q}\left(\zeta_{N}\right)$. Note

$$
X(N)_{\mathbb{C}} \cong \Gamma(N) \backslash \mathcal{H} \cup\{\text { cusps }\}
$$

and the function field is
$\mathbb{Q}\left(\zeta_{N}\right)(X(N))=: \mathcal{F}_{N}=\left\{\right.$ modular functions of level N with fourier coefficients in $\left.\mathbb{Q}\left(\zeta_{N}\right)\right\}$.
Definition 25. Modular functions $f: \mathcal{H} \rightarrow \mathbb{C}$ are functions satisfying
(1) f is holomorphic on \mathcal{H};
(2) f is invariant under $\Gamma(N)$, that is

$$
f\left(\frac{a z+b}{c z+d}\right)=f(z)
$$

(3) f is 'meromorphic at cusps', roughly meaning that at ∞ the q-expansion satisfies $f(q)=\sum_{n=-m}^{\infty} a_{n} q^{n / N}$, and similarly at the other cusps.

Example 26. In fact $j \in \mathcal{F}_{1}$. Moreover if f, g are modular forms of weight k and level N then $f / g \in \mathcal{F}_{N}$.
(1) $\mathcal{F}_{1}=\mathbb{Q}(X(1))=\mathbb{Q}(j)$;
(2) $\mathcal{F}_{N}=\mathbb{Q}\left(\zeta_{N}\right)=\mathbb{Q}\left(j, f_{0,1}, \ldots, f_{1,0}\right)$, where these $f_{i, j}$ are the 'Fricke functions'.

Theorem 27. $\mathcal{F}_{N} / \mathcal{F}_{1}$ is Galois and moreover

$$
\operatorname{Gal}\left(\mathcal{F}_{N} / \mathcal{F}_{1}\right) \cong \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) /\{ \pm 1\}
$$

Idea of proof. We give the idea. There are two actions in play.
(1) For $f \in \mathcal{F}_{N}$, we can construct a polynomial (much like in yesterdays lecture)

$$
P_{f}(X)=\prod_{A \in \mathrm{SL}_{2}(\mathbb{Z}) / \Gamma(N)}(X-f(A z)) \in \mathbb{Q}\left(\zeta_{N}, j\right)[X] .
$$

Here $A \in \mathrm{SL}_{2}(\mathbb{Z}) / \Gamma(N) \cong \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$, and $A \cdot j=f(A z)$
(2) Let $\sigma_{d} \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}\right) \cong \mathbb{Z} / N \mathbb{Z}^{\times}$be the automorphism such that $\zeta_{N} \rightarrow$ ζ_{N}^{d}. Then

$$
f^{\sigma_{d}}(z)=\sum_{n=-m}^{\infty} a_{n}^{\sigma_{d}} q^{n / N}
$$

We embed this in $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ via $d \mapsto\left(\begin{array}{ll}1 & 0 \\ 0 & d\end{array}\right)$
Note that πI always acts trivially for both of these, which is where the quotient by ± 1 is coming from.

Let $\mathcal{F}=\cup_{N \geq 1} \mathcal{F}_{N}$, and then

$$
\operatorname{Gal}\left(\mathcal{F} / \mathcal{F}_{1}\right)=\lim _{\leftarrow} \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) /\{ \pm 1\}=\mathrm{GL}_{2}(\widehat{\mathbb{Z}}) /\{ \pm 1\}
$$

where $\widehat{\mathbb{Z}}=\prod_{p \nmid \infty} \mathbb{Z}_{p}$.
Goal: Find $\operatorname{Aut}(\mathcal{F})$. Note that \mathcal{F} / \mathbb{Q} is not Galois.

Theorem 28 (Shimura). There is a short exact sequence

$$
0 \longrightarrow \mathbb{Q}^{\times} \xrightarrow{\gamma} \mathrm{GL}_{2}\left(\mathbb{A}_{f}\right) \longrightarrow \operatorname{Aut}(\mathcal{F}) \longrightarrow 1
$$

where $\mathbb{A}_{f}=\prod_{p \nmid \infty}^{\prime} \mathbb{Q}_{p}=\mathbb{A}_{\mathbb{Q}} / \mathbb{R}$ is the restricted direct product over only the finite places, and the map γ is the diagonal embedding $a \mapsto\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$.

Action of $\mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)$ on \mathcal{F} :

$$
\mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)=\mathrm{GL}_{2}\left(\mathbb{Q}^{+}\right) \cdot \mathrm{GL}_{2}(\widehat{\mathbb{Z}})
$$

so write $g \in \mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)$ as γu for $\gamma \in \mathrm{GL}_{2}\left(\mathbb{Q}^{+}\right)$and $u \in \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$. Note that the decomposition above is not unique but

$$
f^{g}=\left(f^{\gamma}\right)^{u}
$$

is well defined. We then have actions of the subgroups via:

- $\mathrm{GL}_{2}\left(\mathbb{Q}^{+}\right)$acts by

$$
f^{\gamma}(z)=f(\gamma z)
$$

- $\mathrm{GL}_{2}(\widehat{\mathbb{Z}}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) \cong \mathrm{SL}_{2}(\mathbb{Z}) / \Gamma(N)$ acts as before $f \mapsto f^{u}$.
5.3. Shimura Reciprocity Law. Recall that $K=\mathbb{Q}(\sqrt{-D})$ for $D>0$ is an imaginary quadratic field, H the Hilber class field, and $\tau \in H \cap K$. We pick an embedding

$$
\begin{aligned}
& K^{*} \rightarrow \mathrm{GL}_{2}(\mathbb{Q}) \\
& k \mapsto g_{\tau}(k),
\end{aligned}
$$

where we choose

$$
g_{\tau}(k)\binom{\tau}{1}=k\binom{\tau}{1}
$$

that is, it preserves $\binom{\tau}{1} \in \mathbb{P}^{1}(\mathbb{C})$. Mutatis mutandis, we define an embedding

$$
\mathbb{A}_{K}^{\times} \rightarrow \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)
$$

where now $g_{\tau}(x)=\left(\begin{array}{cc}t-a B / A & -C s / A \\ s & t\end{array}\right)$ where $\tau=s+t \tau$ for $s, t \in \mathbb{A}_{\mathbb{Q}}$ and $A \tau^{2}+B \tau+C=0$ for some $A, B, C \in \mathbb{Z}$.

Theorem 29 (Shimura). Let $f \in \mathcal{F}$ be a modular function, and $\tau \in H \cap K$. For $x \in \mathbb{A}_{K}^{\times}$,

$$
(f(\tau))^{\sigma_{x}^{-1}}=f^{g_{\tau}(x)}(\tau)
$$

where:

- $\sigma_{x} \leftrightarrow x$ via the Artin map $\mathbb{A}_{K}^{\times} \rightarrow \operatorname{Gal}\left(K^{\mathrm{ab}} / K\right)$;
- $g_{\tau}(x) \in \operatorname{Aut}(\mathcal{F})$.

Remark 30. $f(\tau) \in K^{\text {ab }}$, and by the theorem we know what the Galois conjugates are.

Example 31. Consider $K=\mathbb{Q}(\sqrt{-3})$, this is a PID, and let $f \in \mathcal{F}_{N}$ with integer coefficients. Take a primitive ideal

$$
\mathcal{A}=\left\langle a, \frac{-b+\sqrt{-3}}{2}\right\rangle_{\mathbb{Z}}
$$

where again $a=N_{K / \mathbb{Q}}(\mathcal{A})$ and $b^{2} \equiv-3 \bmod 4$.
Claim: $f(\tau)^{\sigma_{\mathcal{A}}^{-1}}=f\left(\frac{-b+\sqrt{-3}}{2}\right)$
proof. $\sigma_{\mathcal{A}}=\sigma_{x}$, where

$$
\left(t a+s \frac{-b+\sqrt{-3}}{2}\right)=\mathcal{A} \leftrightarrow\left(t a+s \frac{-b+\sqrt{-3}}{2}\right)_{v \mid \mathcal{A}} \in \mathbb{A}_{K}^{\times}
$$

- The minimal polynomial for τ is

$$
X^{2}+b X+\frac{b^{2}+3}{4}=0
$$

Then $g_{\tau}(x)=\left(\begin{array}{cc}t a-s b & -s c a \\ s & t a\end{array}\right)_{p \mid \mathcal{A}}$, where $4 a c=\frac{b^{2}+3}{4}$.
Shimura reciprocity gives

$$
f(\tau)^{\sigma_{x}^{-1}}=f^{g_{\tau}(x)}(\tau)
$$

What we do is first write this as a product, that is you can compute that

$$
g_{\tau}(x)=\left(\begin{array}{cc}
t a-s b & -s c \\
s & t
\end{array}\right)_{p \mid \mathcal{A}}\left(\begin{array}{ll}
1 & 0 \\
0 & a
\end{array}\right)_{p \mid \mathcal{A}} .
$$

It is easy to see that the left hand term is in $\mathrm{SL}_{2}(\widehat{\mathbb{Z}})$, and has trivial action. We rewrite this right hand side as

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & a
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & a^{-1}
\end{array}\right)_{p \nmid \mathcal{A}} .
$$

The right hand side of this acts trivially because the Fourier coefficients are in \mathbb{Z}. Thus we get

$$
f^{\sigma_{\mathcal{A}}^{-1}}(\tau)=f\left(\frac{\tau}{a}\right)
$$

Lecture 5 (Rosu)

6. CM for Elliptic Curves

Today we'll mainly talk about Hecke characters and the theorem of CM for elliptic curves.

Hecke Characters. Let K be a number field, and \mathbb{A}_{K}^{\times}the idéles. Recall the following definition.
Definition 32. A Hecke character is a continuous homomorphism

$$
\chi: \mathbb{A}_{K}^{\times} / K^{\times} \rightarrow \mathbb{C}^{\times}
$$

We write this as $\chi=\otimes_{v} \chi_{v}$, where $\chi_{v}: K_{v}^{\times} \rightarrow \mathbb{C}^{\times}$is the restriction to the component at the place $v . \quad \chi$ has conductor \mathfrak{f} which is the smallest ideal such that $\chi_{v}\left(1+\mathfrak{f} \mathcal{O}_{v}\right)=1$ for all v.

Remark 33. We can think of Hecke characters classically as

$$
\chi: I(\mathfrak{f}) \rightarrow \mathbb{C}^{\times}
$$

where the domain here is the ideals prime to \mathfrak{f}, with some infinity type (that is, a continuous character $\left.\chi_{\infty}: K_{\infty}=K \otimes_{\mathbb{Q}} \mathbb{R}=\prod_{v \mid \infty} K_{v}^{\times} \rightarrow \mathbb{C}^{\times}\right)$.

Example 34. If $K=\mathbb{Q}(\sqrt{-D})$ an imaginary quadratic field, $\chi_{\infty}: \mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times}$is some continuous homomorphism and for $\alpha \equiv 1 \bmod \mathfrak{f}=\mathfrak{f}_{\chi}$ we have

$$
\chi(\langle\alpha\rangle)=\chi_{\infty}(\alpha)^{-1}
$$

Remark 35. If $\chi_{\infty}=1$ then we have

$$
\chi: I(\mathfrak{f}) / \mathcal{P}_{1, \mathfrak{f}} \cong \operatorname{Gal}\left(H_{(\mathfrak{f})} / K\right) \rightarrow \mathbb{C}^{\times}
$$

where $H_{(\mathfrak{f})} / K$ is the ray class field for \mathfrak{f}. Note that this is a character on a finite group!

We are interested in $\chi_{\infty}(z)=N_{K / \mathbb{Q}}(z)^{-1}=|z|^{-2}$, which will correspond to elliptic curves.

Remark 36. The two definitions correspond as follows: if $\chi: \mathbb{A}_{K}^{\times} / K^{\times} \rightarrow \mathbb{C}^{\times}$with conductor \mathfrak{f} is as in the first definition then it corresponds to $\tilde{\chi}: I(\mathfrak{f}) \rightarrow \mathbb{C}^{\times}$where for a prime $\mathfrak{p} \nmid \mathfrak{f}$ we take

$$
\tilde{\chi}(\mathfrak{p}):=\chi_{\mathfrak{p}}\left(\pi_{\mathfrak{p}}\right),
$$

where $\pi_{\mathfrak{p}}$ is a uniformizer in $K_{\mathfrak{p}}$, and for the infinite part we take

$$
\tilde{\chi}_{\infty}(z):=\chi_{\infty}(z) .
$$

Going back the way we take $\tilde{\chi}: I(\mathfrak{f}) / P_{1, \mathfrak{f}} \rightarrow \mathbb{C}^{\times}$to the character χ with for $\mathfrak{p} \nmid \mathfrak{f}$

$$
\begin{array}{r}
\chi_{\mathfrak{p}}\left(\mathcal{O}_{\mathfrak{p}}^{\times}\right)=1 \\
\chi_{\mathfrak{p}}\left(\pi_{\mathfrak{p}}\right)=\tilde{\chi}(\mathfrak{p})
\end{array}
$$

and at $v=\infty$ we take $\chi_{\infty}=\tilde{\chi}_{\infty}$.
Example 37 (Dirichlet Characters). $\chi_{\text {Dir }}: \mathbb{Z} / N \mathbb{Z}^{\times} \rightarrow \mathbb{C}^{\times}$given by $m \bmod N \mapsto$ ζ^{m}, where ζ is an N th root of unity. Then this corresponds to

$$
\begin{aligned}
\chi: I_{\mathbb{Q}}(N) & \rightarrow \mathbb{C}^{\times} \\
\langle p\rangle & \mapsto \chi(p \quad \bmod N) .
\end{aligned}
$$

If $\chi_{D i r}$ is primitive then the conductor of χ is N. Note that the associated character on the idéles is, for $p \nmid N$:

$$
\begin{aligned}
& \tilde{\chi}: \mathbb{A}_{\mathbb{Q}}^{\times} \rightarrow \mathbb{C}^{\times} \\
& \tilde{\chi}_{p}(p)=\chi(p \quad \bmod N) \\
& \tilde{\chi}_{\infty}(z)=1 .
\end{aligned}
$$

Example 38. $K=\mathbb{Q}(\sqrt{-3})$, which is a PID. Then define

$$
\varphi: I(3) \rightarrow \mathbb{C}^{\times}
$$

by $\varphi(\langle\alpha\rangle)=\alpha$ for $\alpha \equiv 1 \bmod 3$, and let $\varphi_{\infty}(x)=z^{-1}$. This corresponds to $E: y^{2}=x^{3}-432 \leftrightarrow x^{3}+y^{3}=1$.
6.1. Elliptic Curves with CM. Goal: Finda Hecke character corresponding to χ_{E}.

Recall from Vonk's lectures
(1) If E / L has CM then $j(E) \in \overline{\mathbb{Z}}$, which is then equivalent to E having potential good reduction at all places of L (meaning that all reduction is either good or additive which becomes good over a finite extension). We have $L_{p}(E, s)=\left\{\begin{array}{l}\text { good reduction terms } \\ 1 \text { add reduction }\end{array}\right.$
(2) If $K=\mathbb{Q}(\sqrt{-D})$ is imaginary quadratic, and $\mathfrak{a} \leq \mathcal{O}_{K}$ is an ideal, then there is an associated elliptic curve $E=E_{\mathfrak{a}}$ with

$$
E_{\mathfrak{a}}(\mathbb{C})=\mathbb{C} / \mathfrak{a}
$$

Let H / K be the Hilbert class field, then in fact we have $E_{\mathfrak{a}} / H$. Moreover

$$
E_{\mathrm{tors}} \cong K / \mathfrak{a}
$$

We have an action of $s \in \mathbb{A}_{K}^{\times}$on $E_{\text {tors }}$

$$
\oplus_{\mathfrak{p}} K_{\mathfrak{p}} / \mathfrak{a}_{\mathfrak{p}} \stackrel{\alpha}{\sim} K / \mathfrak{a} \xrightarrow{\cdot s} K / s^{-1} \mathfrak{a} \xrightarrow{\sim} \oplus_{\mathfrak{p}} K_{\mathfrak{p}} / s_{\mathfrak{p}}^{-1} \mathfrak{a}_{\mathfrak{p}}
$$

where $\alpha: k \bmod \mathfrak{a} \mapsto k \bmod f a_{\mathfrak{p}}$.
We now state the main theorem of CM.
Theorem 39 (Main Theorem of CM). Using the Artin Reciprocity map

$$
\mathbb{A}_{K}^{\times} / K^{\times} \rightarrow \operatorname{Gal}\left(K^{\mathrm{ab}} / K\right)
$$

where we denote the image of s by σ_{s}, then the Galois action on $E_{\text {tors }}$ is given by multiplicationby idéles:

where $L=\mathbb{Q}(j(E))$, and we think of the top row as 'analytic' and the bottom as 'algebraic'.

6.2. Hecke Characters for CM Elliptic Curves.

Theorem 40 (Deuring). If E / L has $C M$ by \mathcal{O}_{K} and $K \subsetneq L$ then we can find a Hecke character

$$
\chi_{E}: \mathbb{A}_{L^{\prime}}^{\times} / L^{\prime \times} \rightarrow \mathbb{C}^{\times}
$$

where $L^{\prime}=L K$ is the compositum, such that

$$
L\left(E / L^{\prime}, s\right)=L\left(s, \chi_{E}\right)
$$

Remark 41. If \mathfrak{p} is a prime of L then

$$
L_{\mathfrak{p}}\left(E / L^{\prime}, s\right)=\prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}\left(s, \chi_{\mathfrak{q}}\right)
$$

Moreover we have the following.

- Bad reduction corresponds to $\mathfrak{p} \mid \mathfrak{f}$ (where \mathfrak{f} is the conductor $f \chi_{E}$).
- Good reduction corresponds to 1 on both sides.

Generally this is saying

$$
1-a_{\mathfrak{p}} q^{-s}+q^{1-2 s}=\prod_{\mathfrak{q} \mid \mathfrak{p}}\left(1-\chi_{E}(\mathfrak{q}) N(\mathfrak{q})^{-s}\right)
$$

where $q=N(\mathfrak{p})$.
Remark 42. If $K \subset L$ then $\chi_{E}: \mathbb{A}_{L}^{\times} / L^{\times} \rightarrow K^{\times}$, and

$$
L\left(E / L^{\prime}, s\right)=L\left(s, \chi_{E}\right) L\left(s, \overline{\chi_{E}}\right)
$$

6.3. (Idea of) Construction. The idea of the construction of $\chi_{E}: \mathbb{A}_{L}^{\times} / L^{\times} \rightarrow \mathbb{C}^{\times}$ in the case $K \subset L$ is as follows.
(1) Construct a homomorphism

$$
\begin{aligned}
\alpha_{E}: \mathbb{A}_{L}^{\times} & \rightarrow \mathbb{A}_{K}^{\times} \rightarrow K^{\times} \\
x & \mapsto N_{L / K}(x)=s \mapsto ?
\end{aligned}
$$

Recall for E / L with $j(E) \in L$ the diagram from the main theorem of CM :

and note that $s \in N_{L / K} \mathbb{A}_{L}^{\times} / L^{\times}$if and only if σ_{s} preserves L, since

$$
\mathbb{A}_{L}^{\times} / N_{L / K} \mathbb{A}_{K}^{\times} / K^{\times} \cong \operatorname{Gal}(L / K)
$$

Thus the bottom line above is an isomorphism and we have that \mathfrak{a} and $s^{-1} \mathfrak{a}$ must be homothetic lattices.
(2) $\chi_{E}=\alpha_{E} \cdot\left(N_{L / K}\right)_{\infty}^{-1}$

Remark 43. Assume E / H where H is the Hilbert class field of K and E has CM by \mathcal{O}_{K}. Then
(1) $\chi_{E}: \mathbb{A}_{H}^{\times} / H^{\times} \rightarrow K^{\times}$determines the isogeny class of E / H.
(2) $\left(\chi_{E}, j(E)\right)$ determines the isomorphism class of E / H.
(3) A Hecke character $\chi: \mathbb{A}_{H} / H^{\times} \rightarrow \mathbb{C}^{\times}$correspond to E / H with CM by \mathcal{O}_{K} if and only if $\chi_{\infty}=\left(N_{L / K}^{-1}\right)_{\infty}$

